IDEAS home Printed from https://ideas.repec.org/a/ris/jspord/0017.html
   My bibliography  Save this article

A Graph Theory Approach for Geovisualization of Anthropogenic Land Use Change: An Application to Lisbon

Author

Listed:

Abstract

Urban sprawl and growth has experienced increased concern in geographic and environmental literature. Preceding the existence of robust frameworks found in regional and urban planning, as well as urban geography and economics, the spatial properties of allocation of urban land use are still far from being completely understood. This is largely due to the underlying complexity of the change found at the spatial level of urban land use, merging social, economic and natural drivers. The spatial patterns formed, and the Connectivity established among the different subsets of land-use types, becomes a complex network of interactions over time, helping to shape the structure of the city. The possibility to merge the configuration of land-use with complex networks may be assessed elegantly through graph theory. Nodes and edges can become abstract representations of typologies of Space and are represented into a topological space of different land use types which traditionally share common spatial boundaries. Within a regional framework, the links between adjacent and neighboring urban land use types become better understood, by means of a Kamada-Kawai algorithm. This study uses land use in Lisbon over three years, 1990, 2000 and 2006, to develop a Kamada-Kawai graph interpretation of land-use as a result of neighboring power. The rapid change witnessed in Lisbon since the nineties, as well as the availability of CORINE Land Cover data in these three time stamps, permits a reflection on anthropogenic land-use change in urban and semi-urban areas in Portugal’s capital. This paper responds to (1) the structure and connectivity of urban land use over time, demonstrating that most of the agricultural land is stressed to transform to urban, gaining a central role in future. (2) Offer a systemic approach to land-use transitions generating what we call spatial memory, where land use change is often unpredictable over space, but becomes evident in a graph theory framework, and (3) advance in the geovisual understanding of spatial phenomena in land use transitions by means of graph theory. Thus, the structure of this combined Method enables urban and landscape to have a better understanding of the spatial interaction of land-use types within the city, promoting an elegant solution to rapid geovisualization for land-use management in general.

Suggested Citation

  • Vaz, Eric & Aversa, Joseph, 2013. "A Graph Theory Approach for Geovisualization of Anthropogenic Land Use Change: An Application to Lisbon," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 1(4), pages 254-264.
  • Handle: RePEc:ris:jspord:0017
    as

    Download full text from publisher

    File URL: http://www.cieo.pt/journal/J_4/article3.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Schwanen & Frans M. Dieleman & Martin Dijst, 2004. "The Impact of Metropolitan Structure on Commute Behavior in the Netherlands: A Multilevel Approach," Growth and Change, Wiley Blackwell, vol. 35(3), pages 304-333, September.
    2. Todd Litman & David Burwell, 2006. "Issues in sustainable transportation," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(4), pages 331-347.
    3. Vaz, Eric & Campos, Ana Claudia, 2013. "A Multi-Dasymetric Mapping Approach for Tourism," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 1(4), pages 265-277.
    4. Rosenthal, Stuart S. & Strange, William C., 2001. "The Determinants of Agglomeration," Journal of Urban Economics, Elsevier, vol. 50(2), pages 191-229, September.
    5. repec:ris:cieodp:2013_022 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    2. Lizhong Hua & Xinxin Zhang & Qin Nie & Fengqin Sun & Lina Tang, 2020. "The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    3. Lizhong Hua & Lina Tang & Shenghui Cui & Kai Yin, 2014. "Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    4. Eric Vaz & Marco Painho & Peter Nijkamp, 2015. "Linking Agricultural Policies with Decision-Making: A Spatial Approach," European Planning Studies, Taylor & Francis Journals, vol. 23(4), pages 733-745, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ris:cieodp:2013_021 is not listed on IDEAS
    2. Mark Partridge & M. Rose Olfert & Alessandro Alasia, 2007. "Canadian cities as regional engines of growth: agglomeration and amenities," Canadian Journal of Economics, Canadian Economics Association, vol. 40(1), pages 39-68, February.
    3. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    4. SAITO Yukiko, 2013. "Role of Hub Firms in Geographical Transaction Network," Discussion papers 13080, Research Institute of Economy, Trade and Industry (RIETI).
    5. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    6. Mohamed Amara & Khaled Thabet, 2019. "Firm and regional factors of productivity: a multilevel analysis of Tunisian manufacturing," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(1), pages 25-51, August.
    7. Anna M. Ferragina & Giulia Nunziante, 2018. "Are Italian firms performances influenced by innovation of domestic and foreign firms nearby in space and sectors?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 335-360, September.
    8. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    9. Koech Cheruiyot, 2022. "Detecting spatial economic clusters using kernel density and global and local Moran's I analysis in Ekurhuleni metropolitan municipality, South Africa," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(2), pages 307-327, April.
    10. Barbora Mazúrová & Ján Kollár & Gabriela Nedelová, 2021. "Travel Mode of Commuting in Context of Subjective Well-Being—Experience from Slovakia," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    11. Verhetsel, Ann & Vanelslander, Thierry, 2010. "What location policy can bring to sustainable commuting: an empirical study in Brussels and Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 18(6), pages 691-701.
    12. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    13. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    14. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    15. Carlino, Gerald & Kerr, William R., 2015. "Agglomeration and Innovation," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 349-404, Elsevier.
    16. Giulia Faggio & Olmo Silva & William C Strange, 2020. "Tales of the city: what do agglomeration cases tell us about agglomeration in general? [The anchor tenant hypothesis: exploring the role of large, local, R&D-intensive firms in regional innovation ," Journal of Economic Geography, Oxford University Press, vol. 20(5), pages 1117-1143.
    17. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    18. Lu, Jiangyong & Tao, Zhigang, 2009. "Trends and determinants of China's industrial agglomeration," Journal of Urban Economics, Elsevier, vol. 65(2), pages 167-180, March.
    19. Rafael Henrique Moraes Pereira & Tim Schwanen, 2013. "Commute Time in Brazil (1992-2009): Differences Between Metropolitan Areas, by Income Levels and Gender," Discussion Papers 1813a, Instituto de Pesquisa Econômica Aplicada - IPEA.
    20. Mark J. O. Bagley, 2019. "Networks, geography and the survival of the firm," Journal of Evolutionary Economics, Springer, vol. 29(4), pages 1173-1209, September.
    21. Federico Curci, 2015. "The taller the better? Agglomeration determinants and urban structure," ERSA conference papers ersa15p991, European Regional Science Association.

    More about this item

    Keywords

    Graph Theory; Spatial Interaction; Urban Change; Land Use Change;
    All these keywords.

    JEL classification:

    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R52 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Land Use and Other Regulations
    • R58 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Regional Development Planning and Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:jspord:0017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Silvia Fernandes (email available below). General contact details of provider: https://edirc.repec.org/data/ctalgpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.