IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0433.html
   My bibliography  Save this article

Measuring heterogeneity with fixed effect quantile regression: Long panels and short panels

Author

Listed:
  • Besstremyannaya, Galina

    (National Research University Higher School of Economics, Moscow;)

  • Golovan, Sergei

    (New Economic School, Moscow;)

Abstract

he desire to capture heterogeneity in the response of the dependent variable to covariates often forces empiricists to employ panel data quantile regression models. Very often practitioners forget the limitations of their datasets in terms of the sample size n and the length of panel T. Yet, quantile regression requires large samples, long panels and small value of the ratio n/T. So the estimator in quantile regression with short panels is biased. The paper reviews the approaches for estimating longitudinal models for quantile regression. We highlight the fact that a method of smoothed quantile regression may be viewed as a remedy for reducing the asymptotic bias of the estimator in short panels, both in case of quantile-dependent and quantile-independent fixed effect specifications.

Suggested Citation

  • Besstremyannaya, Galina & Golovan, Sergei, 2021. "Measuring heterogeneity with fixed effect quantile regression: Long panels and short panels," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 70-82.
  • Handle: RePEc:ris:apltrx:0433
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2021_64_070-082.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    2. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    3. Haihong Li & Bruce G. Lindsay & Richard P. Waterman, 2003. "Efficiency of projected score methods in rectangular array asymptotics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 191-208, February.
    4. Chunping Liu & Audrey Laporte & Brian S. Ferguson, 2008. "The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations," Health Economics, John Wiley & Sons, Ltd., vol. 17(9), pages 1073-1087, September.
    5. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    6. Parente Paulo M.D.C. & Santos Silva João M.C., 2016. "Quantile Regression with Clustered Data," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 1-15, January.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    8. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    9. Galina Besstremyannaya & Sergei Golovan, 2019. "Reconsideration of a simple approach to quantile regression for panel data," The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 292-308.
    10. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    11. Liang Chen & Yulong Huo, 2021. "A simple estimator for quantile panel data models using smoothed quantile regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 247-263.
    12. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Besstremyannaya, Galina, 2017. "Heterogeneous effect of the global financial crisis and the Great East Japan Earthquake on costs of Japanese banks," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 66-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besstremyannaya, Galina & Dasher, Richard & Golovan, Sergei, 2022. "Quantifying heterogeneity in the relationship between R&D intensity and growth at innovative Japanese firms: A quantile regression approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 67, pages 27-45.
    2. Li Tao & Lingnan Tai & Manling Qian & Maozai Tian, 2023. "A New Instrumental-Type Estimator for Quantile Regression Models," Mathematics, MDPI, vol. 11(15), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galina Besstremyannaya & Sergei Golovan, 2023. "Measuring heterogeneity in hospital productivity: a quantile regression approach," Journal of Productivity Analysis, Springer, vol. 59(1), pages 15-43, February.
    2. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    3. Boikos, Spyridon & Panagiotidis, Theodore & Voucharas, Georgios, 2022. "Financial development, reforms and growth," Economic Modelling, Elsevier, vol. 108(C).
    4. Jorge Eduardo Camusso & Ana Inés Navarro, 2021. "Asymmetries in aggregate income risk over the business cycle: evidence from administrative data of Argentina," Asociación Argentina de Economía Política: Working Papers 4447, Asociación Argentina de Economía Política.
    5. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    6. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    7. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    8. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    9. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    10. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    11. Michael Haylock, 2022. "Distributional differences in the time horizon of executive compensation," Empirical Economics, Springer, vol. 62(1), pages 157-186, January.
    12. Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
    13. Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
    14. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    15. Bargain, Olivier & Etienne, Audrey & Melly, Blaise, 2021. "Informal pay gaps in good and bad times: Evidence from Russia," Journal of Comparative Economics, Elsevier, vol. 49(3), pages 693-714.
    16. Blasberg, Alexander & Kiesel, Rüdiger & Taschini, Luca, 2023. "Carbon default swap – disentangling the exposure to carbon risk through CDS," LSE Research Online Documents on Economics 118092, London School of Economics and Political Science, LSE Library.
    17. Panayiotis Tzeremes, 2022. "The Asymmetric Effects of Regional House Prices in the UK: New Evidence from Panel Quantile Regression Framework," Studies in Microeconomics, , vol. 10(1), pages 7-22, June.
    18. Alexander Blasberg & Rüdiger Kiesel & Luca Taschini, 2022. "Carbon Default Swap - Disentangling the Exposure to Carbon Risk through CDS," CESifo Working Paper Series 10016, CESifo.
    19. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    20. David Powell, 2022. "Quantile regression with nonadditive fixed effects," Empirical Economics, Springer, vol. 63(5), pages 2675-2691, November.

    More about this item

    Keywords

    quantile regression; panel data;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.