IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Is Embodied Technology the Result of Upstream R&D? Industry-Level Evidence

  • Daniel J. Wilson

    (Federal Reserve Bank of San Francisco)

his paper provides an exploratory analysis of whether data on the research and development (R&D) spending directed at particular technological/product fields can be used to measure industry-level capital-embodied technological change. Evidence from the patent literature suggests that the R&D directed at a product, as the main input into the "innovation" production function, is proportional to the value of the innovations in that product. I confirm this hypothesis by showing that the decline in the relative price of a good is positively correlated with the R&D directed at that product. The hypothesis implies that the technological change, or innovation, embodied in an industry's capital is proportional to the R&D that is done ("upstream") by the economy as a whole on each of the capital goods that a ("downstream") industry purchases. Using R&D data from the National Science Foundation, I construct measures of capital-embodied R&D. I find they have a strong effect on conventionally measured total-factor productivity growth, a phenomenon that seems to be due partly to the mismeasurement of quality change in the capital stock and partly to a positive correlation between embodied and disembodied technological change. Finally, I find the cross-industry variation in empirical estimates of embodied technological change accord with the cross-industry variation in embodied R&D

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Full text
Download Restriction: Access to full texts is restricted to ScienceDirect subscribers and ScienceDirect institutional members. See for details.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier for the Society for Economic Dynamics in its journal Review of Economic Dynamics.

Volume (Year): 5 (2002)
Issue (Month): 2 (April)
Pages: 285-317

in new window

Handle: RePEc:red:issued:v:5:y:2002:i:2:p:285-317
Contact details of provider: Postal: Marina Azzimonti, Department of Economics, Stonybrook University, 10 Nicolls Road, Stonybrook NY 11790 USA
Web page:

More information through EDIRC

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. McHugh, Richard & Lane, Julia, 1987. "The Age of Capital, the Age of Utilized Capital, and Tests of the Embodiment Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 69(2), pages 362-67, May.
  2. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
  3. Norihisa Sakurai & George Papaconstantinou & Evangelos Ioannidis, 1997. "Impact of R&D and Technology Diffusion on Productivity Growth: Empirical Evidence for 10 OECD Countries," Economic Systems Research, Taylor & Francis Journals, vol. 9(1), pages 81-109.
  4. Zvi Griliches, 1998. "Productivity Growth and R&D at the Business Level: Results from the PIMS Data Base," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 134-156 National Bureau of Economic Research, Inc.
  5. Bahk, Byong-Hong & Gort, Michael, 1993. "Decomposing Learning by Doing in New Plants," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 561-83, August.
  6. Scherer, F M, 1982. "Inter-Industry Technology Flows and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 627-34, November.
  7. Plutarchos Sakellaris & Daniel J. Wilson, 2001. "Quantifying embodied technological change," Working Paper Series 2001-16, Federal Reserve Bank of San Francisco.
  8. Dietmar Harhoff & Frederic M. Scherer & Katrin Vopel, 1997. "Exploring the Tail of Patented Invention Value Distributions," CIG Working Papers FS IV 97-27, Wissenschaftszentrum Berlin (WZB), Research Unit: Competition and Innovation (CIG).
  9. Greenwood, J. & Hercowitz, Z. & Krusell, P., 1996. "Long-Run Implications of Investment-Specific Technological Change," RCER Working Papers 420, University of Rochester - Center for Economic Research (RCER).
  10. Charles R. Hulten, 1992. "Growth Accounting When Technical Change is Embodied in Capital," NBER Working Papers 3971, National Bureau of Economic Research, Inc.
  11. Kevin J. Stiroh, 2001. "Information technology and the U.S. productivity revival: what do the industry data say?," Staff Reports 115, Federal Reserve Bank of New York.
  12. Paul Romer, 1989. "Endogenous Technological Change," NBER Working Papers 3210, National Bureau of Economic Research, Inc.
  13. Griliches, Zvi, 1994. "Productivity, R&D, and the Data Constraint," American Economic Review, American Economic Association, vol. 84(1), pages 1-23, March.
  14. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3), pages 783-832.
  15. Andreas Hornstein & Per Krusell, 1996. "Can Technology Improvements Cause Productivity Slowdowns?," NBER Chapters, in: NBER Macroeconomics Annual 1996, Volume 11, pages 209-276 National Bureau of Economic Research, Inc.
  16. Bartelsman, Eric J & Caballero, Ricardo J & Lyons, Richard K, 1994. "Customer- and Supplier-Driven Externalities," American Economic Review, American Economic Association, vol. 84(4), pages 1075-84, September.
  17. Wesley M Cohen & Richard R Nelson & John P Walsh, 2003. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (Or Not)," Levine's Working Paper Archive 618897000000000624, David K. Levine.
  18. Kevin J. Stiroh & Dale W. Jorgenson, 2000. "U.S. Economic Growth at the Industry Level," American Economic Review, American Economic Association, vol. 90(2), pages 161-167, May.
  19. Kortum, Samuel, 1993. "Equilibrium R&D and the Patent-R&D Ratio: U.S. Evidence," American Economic Review, American Economic Association, vol. 83(2), pages 450-57, May.
  20. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45 National Bureau of Economic Research, Inc.
  21. Charles R. Hulten, 1996. "Quality Change in Capital Goods and Its Impact on Economic Growth," NBER Working Papers 5569, National Bureau of Economic Research, Inc.
  22. Goto, Akira & Suzuki, Kazuyuki, 1989. "R&D Capital, Rate of Return on R&D Investment and Spillover of R&D in Japanese Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 71(4), pages 555-64, November.
  23. Hulten, Charles R, 1992. "Growth Accounting When Technical Change Is Embodied in Capital," American Economic Review, American Economic Association, vol. 82(4), pages 964-80, September.
  24. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1988. "Appropriating the Returns from Industrial R&D," Cowles Foundation Discussion Papers 862, Cowles Foundation for Research in Economics, Yale University.
  25. Robert J. Gordon, 1990. "The Measurement of Durable Goods Prices," NBER Books, National Bureau of Economic Research, Inc, number gord90-1.
  26. McHugh, Richard & Lane, Julia, 1983. "The Embodiment Hypothesis: An Interregional Test," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 323-27, May.
  27. repec:ucp:bknber:9780226304557 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:red:issued:v:5:y:2002:i:2:p:285-317. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.