IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Complex Dynamics in a Bertrand Duopoly Game with Heterogeneous Players

  • Tomasz Dubiel-Teleszyński


    (Warsaw School of Economics)

Registered author(s):

    A heterogeneous Bertrand duopoly game with bounded rational and adaptive players manufacturing differentiated products is subject of investigation. The main goal is to demonstrate that participation of one bounded rational player in the game suffices to destabilize the duopoly. The game is modelled with a system of two difference equations. Evolution of prices over time is obtained by iteration of a two dimensional nonlinear map. Equilibria are found and local stability properties thereof are analyzed. Complex behavior of the system is examined by means of numerical simulations. Region of stability of the Nash equilibrium is demonstrated in the plane of the speeds of adjustment. Period doubling route to chaos is presented on the bifurcation diagrams and on the largest Lyapunov characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors are depicted and their fractal dimensions are computed. Sensitive dependence on initial conditions is evidenced.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by CEJEME in its journal Central European Journal of Economic Modelling and Econometrics.

    Volume (Year): 2 (2010)
    Issue (Month): 2 (March)
    Pages: 95-116

    in new window

    Handle: RePEc:psc:journl:v:2:y:2010:i:4:p:95-116
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bischi, Gian Italo & Kopel, Michael, 2001. "Equilibrium selection in a nonlinear duopoly game with adaptive expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 46(1), pages 73-100, September.
    2. Dixit, Avinash K, 1986. "Comparative Statics for Oligopoly," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(1), pages 107-22, February.
    3. Puu, T., 1998. "The chaotic duopolists revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 385-394, January.
    4. repec:cup:cbooks:9780521551861 is not listed on IDEAS
    5. repec:cup:cbooks:9780521558747 is not listed on IDEAS
    6. Dana, Rose-Anne & Montrucchio, Luigi, 1986. "Dynamic complexity in duopoly games," Journal of Economic Theory, Elsevier, vol. 40(1), pages 40-56, October.
    7. Agiza, H.N. & Elsadany, A.A., 2003. "Nonlinear dynamics in the Cournot duopoly game with heterogeneous players," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 512-524.
    8. Onozaki, Tamotsu & Sieg, Gernot & Yokoo, Masanori, 2003. "Stability, chaos and multiple attractors: a single agent makes a difference," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1917-1938, August.
    9. repec:cup:cbooks:9780521484619 is not listed on IDEAS
    10. Rothman, Philip, 1995. "Chaotic dynamics. Theory and applications to economics : Alfredo Medio, (Cambridge University Press, Cambridge 1992) pp. xv + 344, $54.95," Journal of Economic Behavior & Organization, Elsevier, vol. 26(2), pages 308-310, March.
    11. Zhang, Jixiang & Da, Qingli & Wang, Yanhua, 2007. "Analysis of nonlinear duopoly game with heterogeneous players," Economic Modelling, Elsevier, vol. 24(1), pages 138-148, January.
    12. Den Haan, Wouter J., 2001. "The importance of the number of different agents in a heterogeneous asset-pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 25(5), pages 721-746, May.
    13. Agiza, H.N. & Hegazi, A.S. & Elsadany, A.A., 2002. "Complex dynamics and synchronization of a duopoly game with bounded rationality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(2), pages 133-146.
    14. Rassenti, Stephen & Reynolds, Stanley S. & Smith, Vernon L. & Szidarovszky, Ferenc, 2000. "Adaptation and convergence of behavior in repeated experimental Cournot games," Journal of Economic Behavior & Organization, Elsevier, vol. 41(2), pages 117-146, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:2:y:2010:i:4:p:95-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Krzysztof Osiewalski)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.