IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314476.html
   My bibliography  Save this article

Study on R&D result subsidy strategies for PEV enterprises based on heterogeneous consumer technology thresholds and preferences under anxiety issues

Author

Listed:
  • Ye Wang

Abstract

Many governments worldwide hoped to stimulate Pure Electric Vehicle(PEV) enterprises’ R&D and sales through R&D result subsidy policies, but the anxiety issues significantly reduced PEV sales and weakened the policy effectiveness. To achieve better incentive effects, considering the impact of anxiety issues on subsidy strategies is necessary. As anxiety problems stem from typical behavior characteristics of PEV consumers——consumer technology thresholds, reasonable study should understand them and quantify their impact from the perspective of consumer technology thresholds. Therefore, it constructs a sequential game model among the government, the PEV company, and consumers with two dimensions of heterogeneous behavior characteristics——technology thresholds and preferences. It also determines the optimal R&D result subsidy strategies and analyzes the impact of the technology thresholds and preferences on them. It shows that the government should provide subsidies except for PEV enterprises with R&D efficiency in the higher range, and its optimal strategies must consider consumer technology threshold and preference conditions. The lower the technology thresholds of PEV consumers, the lower the optimal subsidy ratio until the technology level of the enterprise is already high enough, and there is no need for subsidies. Higher consumer technology preferences of PEV consumers will achieve the same effect. The numerical simulation shows that compared to other models, the model considering PEV consumer technology thresholds can optimize the subsidy ratio and achieve better incentive effects.

Suggested Citation

  • Ye Wang, 2025. "Study on R&D result subsidy strategies for PEV enterprises based on heterogeneous consumer technology thresholds and preferences under anxiety issues," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0314476
    DOI: 10.1371/journal.pone.0314476
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314476
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314476&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    2. Weidong Meng & Ye Wang & Yuyu Li & Bo Huang, 2020. "Impact of product subsidies on R&D investment for new energy vehicle firms: Considering quality preference of the early adopter group," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    3. Nagy, Roel L.G. & Hagspiel, Verena & Kort, Peter M., 2021. "Green capacity investment under subsidy withdrawal risk," Energy Economics, Elsevier, vol. 98(C).
    4. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    6. Yu, Yi & Zhou, Dequn & Zha, Donglan & Wang, Qunwei & Zhu, Qingyuan, 2021. "Optimal production and pricing strategies in auto supply chain when dual credit policy is substituted for subsidy policy," Energy, Elsevier, vol. 226(C).
    7. Zhao, Yinan & Wen, Yifan & Wang, Fang & Tu, Wei & Zhang, Shaojun & Wu, Ye & Hao, Jiming, 2023. "Feasibility, economic and carbon reduction benefits of ride-hailing vehicle electrification by coupling travel trajectory and charging infrastructure data," Applied Energy, Elsevier, vol. 342(C).
    8. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    9. Jeremy Dijk & Nathan Delacrétaz & Bruno Lanz, 2022. "Technology Adoption and Early Network Infrastructure Provision in the Market for Electric Vehicles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 631-679, November.
    10. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    11. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    12. Liu, Shaojun & Wang, David Z.W. & Tian, Qingyun & Lin, Yun Hui, 2024. "Optimal configuration of dynamic wireless charging facilities considering electric vehicle battery capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    2. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Weidong Meng & Ye Wang & Yuyu Li & Bo Huang, 2020. "Impact of product subsidies on R&D investment for new energy vehicle firms: Considering quality preference of the early adopter group," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    6. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    7. Peng Yu & Jian Zhang & Defang Yang & Xin Lin & Tianying Xu, 2019. "The Evolution of China’s New Energy Vehicle Industry from the Perspective of a Technology–Market–Policy Framework," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    8. Wu, Song-Man & Wang, Qianqian & Chung, Sai-Ho & Hu, Li & Lau, Yui-yip & Liu, Shi Qiang, 2025. "Improving green urban mobility: A study on shared electric vehicles versus taxis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    9. Yijiao Wang & Guoguang Zhou & Ting Li & Xiao Wei, 2019. "Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    10. Liu, Lanjian & Zhang, Tian & Avrin, Anne-Perrine & Wang, Xianwen, 2020. "Is China's industrial policy effective? An empirical study of the new energy vehicles industry," Technology in Society, Elsevier, vol. 63(C).
    11. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    12. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    13. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    14. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    15. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    16. Sheykhfard, Abbas & Azmoodeh, Mohammad & Das, Subasish & Kutela, Boniphace, 2025. "Analyzing purchase intentions of used electric vehicles through consumer experiences: A structural equation modeling approach," Transport Policy, Elsevier, vol. 160(C), pages 125-137.
    17. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    18. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Wang, Xi & Xiong, Zhen & Li, Xingong & Xiong, Yongqing, 2024. "How do nonsubsidized incentive affect enterprises' innovation choices? A case from the new energy vehicle industry in China," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    20. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.