IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297855.html
   My bibliography  Save this article

Optimal dispatching of regional power grid considering vehicle network interaction

Author

Listed:
  • Yuanpeng Hua
  • Shiqian Wang
  • Yuanyuan Wang
  • Linru Zhang
  • Weiliang Liu

Abstract

When large-scale electric vehicles are connected to the grid for unordered charging, it will seriously affect the stability and security of the power system. To solve this problem, this paper proposes a regional power network optimization scheduling method considering vehicle network interaction. Initially, based on the user behavior characteristics and charging and discharging characteristics of electric vehicles, a charging and discharging behavior model of electric vehicles was established. Based on the Monte Carlo sampling algorithm, the scheduling upper and lower limits of each scheduling cycle of electric vehicles were described, and the scheduling potential of each scheduling cycle of electric vehicles was obtained. Then, the electricity price is then used as an incentive parameter to guide EV users to charge during periods of low electricity prices and participate in discharge during periods of peak electricity prices. Aiming at the highest economic efficiency, the best consumption effect of new energy and the smoothest demand-side power curve of regional power grid, a three-objective optimal dispatching model was established. In the later stage, uncertainty factors are taken into consideration by introducing the concept of interval numbers, and an interval multi-objective optimization dispatching model is established. The two dispatching models are solved by NSGA-II algorithm and improved NSGA-II algorithm, and the Pareto solution set is obtained. Finally, based on the analytic Hierarchy Process (AHP), the optimal scheduling scheme is determined. The Monte Carlo sampling method is used to simulate the user side charging demand, and the effectiveness of this method is verified. In addition, the results of the interval multi-objective optimization model and the deterministic multi-objective optimization model are compared, and it is proved that the solution results of the interval multi-objective model are more adaptive, practical and robust to the uncertain factors.

Suggested Citation

  • Yuanpeng Hua & Shiqian Wang & Yuanyuan Wang & Linru Zhang & Weiliang Liu, 2024. "Optimal dispatching of regional power grid considering vehicle network interaction," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0297855
    DOI: 10.1371/journal.pone.0297855
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297855
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297855&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    2. Michael Wolinetz & Jonn Axsen & Jotham Peters & Curran Crawford, 2018. "Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model," Nature Energy, Nature, vol. 3(2), pages 132-139, February.
    3. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    4. Dai, Yuanhang & Hao, Junhong & Wang, Xingce & Chen, Lei & Chen, Qun & Du, Xiaoze, 2022. "A comprehensive model and its optimal dispatch of an integrated electrical-thermal system with multiple heat sources," Energy, Elsevier, vol. 261(PA).
    5. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yanjia & Xie, Da & Zhao, Pengfei & Gu, Chenghong & Wang, Xitian, 2025. "A coordinated optimization strategy for Charging Station siting and EV dispatch based on response costs: A case study of Chicago," Applied Energy, Elsevier, vol. 389(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Zhi & Liu, Xiaochen & Zhang, Ji & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2025. "Orderly solar charging of electric vehicles and its impact on charging behavior: A year-round field experiment," Applied Energy, Elsevier, vol. 381(C).
    2. C. B. Sivaparthipan & Lydia J. Gnanasigamani & Ruchi Agrawal & Bakri Hossain Awaji & P. Sathyaprakash & Mustafa Musa Jaber & Awais Khan Jumani, 2023. "Internet of things enabled privacy-conserving health record virtual sharing using jungle computing," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-26, July.
    3. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    4. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    5. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    6. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    7. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    8. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    9. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Mersch, Matthias & Markides, Christos N., 2025. "System-level techno-economic comparison of residential low-carbon heating and cooling solutions," Energy, Elsevier, vol. 317(C).
    10. Wu, Qi & Luo, Haojie & Cao, Sunliang, 2025. "Net-zero energy synergies of utilising electric shuttle buses to remotely share energy between zero-energy commercial and transportation buildings," Applied Energy, Elsevier, vol. 383(C).
    11. Zixuan Liu & Yao Gao & Tingyu Li & Ruijin Zhu & Dewen Kong & Hao Guo, 2024. "Considering the Tiered Low-Carbon Optimal Dispatching of Multi-Integrated Energy Microgrid with P2G-CCS," Energies, MDPI, vol. 17(14), pages 1-18, July.
    12. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
    13. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    14. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    16. Li, Xiaozhu & Chen, Laijun & Sun, Fan & Hao, Yibo & Du, Xili & Mei, Shenwei, 2023. "Share or not share, the analysis of energy storage interaction of multiple renewable energy stations based on the evolution game," Renewable Energy, Elsevier, vol. 208(C), pages 679-692.
    17. Li, Wanying & Dong, Fugui & Ji, Zhengsen & Wang, Peijun, 2025. "Internal and external coordinated distributionally robust bidding strategy of virtual power plant operator participating in day-ahead electricity spot and peaking ancillary services markets," Applied Energy, Elsevier, vol. 386(C).
    18. Qu, Jiawei & Hou, Kai & Liu, Zeyu & Zhou, Yue & Zhu, Lewei & Dong, Xiaohong & Mu, Yunfei & Jia, Hongjie, 2025. "A hybrid time-and-event-driven strategy for integrated community energy system planning," Applied Energy, Elsevier, vol. 384(C).
    19. Meng, Anbo & Wu, Zhenbo & Zhang, Zhan & Xu, Xuancong & Tang, Yanshu & Xie, Zhifeng & Xian, Zikang & Zhang, Haitao & Luo, Jianqiang & Wang, Yu & Yan, Baiping & Yin, Hao, 2024. "Optimal scheduling of integrated energy system using decoupled distributed CSO with opposition-based learning and neighborhood re-dispatch strategy," Renewable Energy, Elsevier, vol. 224(C).
    20. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.