IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225002440.html
   My bibliography  Save this article

System-level techno-economic comparison of residential low-carbon heating and cooling solutions

Author

Listed:
  • Aunedi, Marko
  • Olympios, Andreas V.
  • Pantaleo, Antonio M.
  • Mersch, Matthias
  • Markides, Christos N.

Abstract

This paper studies portfolios of electricity- and hydrogen-driven heat pumps, electricity- and hydrogen-driven boilers and thermal energy storage technologies from an energy system perspective. Thermodynamic and component-costing models of heating and cooling technologies are integrated into a whole-energy system cost optimisation model to determine configurations of heating and cooling systems that minimise the overall system cost. Case studies focus on two archetypal systems (North and South) that differ in terms of heating and cooling demand and availability profiles of solar and wind generation. Modelling results suggest that optimal capacities for heating and cooling technologies vary significantly depending on system properties. Between 83 % and 100 % of low-carbon heat is supplied by electric heat pump technologies, with the rest contributed by electric or hydrogen boilers, supplemented by heat storage. Air-to-air electric heat pumps emerge as a significant contributor to both heating and cooling, although their contribution may be constrained by the compatibility with existing heating systems and the inability to provide hot water. Nevertheless, they are found to be a useful supplementary source of space heating that can displace between 20 and 33 GWth of other heating technologies compared to the case where they do not contribute to space heating.

Suggested Citation

  • Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Mersch, Matthias & Markides, Christos N., 2025. "System-level techno-economic comparison of residential low-carbon heating and cooling solutions," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002440
    DOI: 10.1016/j.energy.2025.134602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Vering, Christian & Maier, Laura & Breuer, Katharina & Krützfeldt, Hannah & Streblow, Rita & Müller, Dirk, 2022. "Evaluating heat pump system design methods towards a sustainable heat supply in residential buildings," Applied Energy, Elsevier, vol. 308(C).
    2. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    3. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    4. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    5. Olympios, Andreas V. & Song, Jian & Ziolkowski, Aleksander & Shanmugam, Vethalingam S. & Markides, Christos N., 2024. "Data-driven compressor performance maps and cost correlations for small-scale heat-pumping applications," Energy, Elsevier, vol. 291(C).
    6. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    7. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    8. Quiggin, Daniel & Buswell, Richard, 2016. "The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios," Energy, Elsevier, vol. 98(C), pages 253-270.
    9. Jan Rosenow & Duncan Gibb & Thomas Nowak & Richard Lowes, 2022. "Heating up the global heat pump market," Nature Energy, Nature, vol. 7(10), pages 901-904, October.
    10. Dai, Yuanhang & Hao, Junhong & Wang, Xingce & Chen, Lei & Chen, Qun & Du, Xiaoze, 2022. "A comprehensive model and its optimal dispatch of an integrated electrical-thermal system with multiple heat sources," Energy, Elsevier, vol. 261(PA).
    11. Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
    12. White, Philip R. & Rhodes, Joshua D. & Wilson, Eric J.H. & Webber, Michael E., 2021. "Quantifying the impact of residential space heating electrification on the Texas electric grid," Applied Energy, Elsevier, vol. 298(C).
    13. Peng Fu & Danny Pudjianto & Xi Zhang & Goran Strbac, 2020. "Integration of Hydrogen into Multi-Energy Systems Optimisation," Energies, MDPI, vol. 13(7), pages 1-19, April.
    14. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    15. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    2. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    3. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    4. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
    5. López-Ceballos, Alicia & del Cañizo, Carlos & Antón, Ignacio & Datas, Alejandro, 2025. "Integrating lithium-ion and thermal batteries with heat pumps for enhanced photovoltaic self-consumption," Applied Energy, Elsevier, vol. 390(C).
    6. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Keskar, Aditya & Galik, Christopher & Johnson, Jeremiah X., 2023. "Planning for winter peaking power systems in the United States," Energy Policy, Elsevier, vol. 173(C).
    8. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).
    9. Gillett, W.B. & Kalogirou, S.A. & Morthorst, P.E. & Norton, B. & Ornetzeder, M., 2025. "Perspectives on decarbonisation of existing buildings in Europe," Renewable Energy, Elsevier, vol. 242(C).
    10. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    12. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    13. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    14. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    15. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    16. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    17. Gabriel Reichert & Sophie Ehrenbrandtner & Robert Fina & Franz Theuretzbacher & Clemens Birklbauer & Christoph Schmidl, 2025. "Different Types of Heat Pump Owners in Austria—Purchase Arguments, User Satisfaction, Operating Habits, and Expectations Regarding Control and Regulation Strategies," Businesses, MDPI, vol. 5(2), pages 1-36, April.
    18. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    19. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    20. Kim, Hyeonjun & Song, Gayoung & Ha, Yoonhee, 2025. "Green hydrogen export potential in each Southeast Asian country based on exportable volumes and levelized cost of hydrogen," Applied Energy, Elsevier, vol. 383(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.