IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285215.html
   My bibliography  Save this article

Better null models for assessing predictive accuracy of disease models

Author

Listed:
  • Alexander C Keyel
  • A Marm Kilpatrick

Abstract

Null models provide a critical baseline for the evaluation of predictive disease models. Many studies consider only the grand mean null model (i.e. R2) when evaluating the predictive ability of a model, which is insufficient to convey the predictive power of a model. We evaluated ten null models for human cases of West Nile virus (WNV), a zoonotic mosquito-borne disease introduced to the United States in 1999. The Negative Binomial, Historical (i.e. using previous cases to predict future cases) and Always Absent null models were the strongest overall, and the majority of null models significantly outperformed the grand mean. The length of the training timeseries increased the performance of most null models in US counties where WNV cases were frequent, but improvements were similar for most null models, so relative scores remained unchanged. We argue that a combination of null models is needed to evaluate the forecasting performance of predictive models for infectious diseases and the grand mean is the lowest bar.

Suggested Citation

  • Alexander C Keyel & A Marm Kilpatrick, 2023. "Better null models for assessing predictive accuracy of disease models," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0285215
    DOI: 10.1371/journal.pone.0285215
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285215
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285215&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    2. Alexander C Keyel & Morgan E Gorris & Ilia Rochlin & Johnny A Uelmen & Luis F Chaves & Gabriel L Hamer & Imelda K Moise & Marta Shocket & A Marm Kilpatrick & Nicholas B DeFelice & Justin K Davis & Eli, 2021. "A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    2. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    3. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
    5. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    6. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    7. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    8. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    9. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    10. Robu, Valentin & Chalkiadakis, Georgios & Kota, Ramachandra & Rogers, Alex & Jennings, Nicholas R., 2016. "Rewarding cooperative virtual power plant formation using scoring rules," Energy, Elsevier, vol. 117(P1), pages 19-28.
    11. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    12. Victor Jose, 2009. "A Characterization for the Spherical Scoring Rule," Theory and Decision, Springer, vol. 66(3), pages 263-281, March.
    13. Crosetto, Paolo & Filippin, Antonio & Katuščák, Peter & Smith, John, 2020. "Central tendency bias in belief elicitation," Journal of Economic Psychology, Elsevier, vol. 78(C).
    14. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. Reinhard Selten, 1998. "Axiomatic Characterization of the Quadratic Scoring Rule," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 43-61, June.
    16. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    17. Glenn Harrison & Karlijn Morsink & Mark Schneider, 2022. "Literacy and the quality of index insurance decisions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 66-97, March.
    18. de Haan, Thomas, 2020. "Eliciting belief distributions using a random two-level partitioning of the state space," Working Papers in Economics 1/20, University of Bergen, Department of Economics.
    19. Glenn W. Harrison & Andre Hofmeyr & Harold Kincaid & Brian Monroe & Don Ross & Mark Schneider & J. Todd Swarthout, 2022. "Subjective beliefs and economic preferences during the COVID-19 pandemic," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 795-823, June.
    20. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.