IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282083.html
   My bibliography  Save this article

Refusal to participate in research among hard-to-reach populations: The case of detained persons

Author

Listed:
  • Stéphanie Baggio
  • Leonel Gonçalves
  • Patrick Heller
  • Hans Wolff
  • Laurent Gétaz

Abstract

Providing insights on refusal to participate in research is critical to achieve a better understanding of the non-response bias. Little is known on people who refused to participate, especially in hard-to-reach populations such as detained persons. This study investigated the potential non-response bias among detained persons, comparing participants who accepted or refused to sign a one-time general informed consent. We used data collected in a cross-sectional study primary designed to evaluate a one-time general informed consent for research. A total of 190 participants were included in the study (response rate = 84.7%). The main outcome was the acceptance to sign the informed consent, used as a proxy to evaluate non-response. We collected sociodemographic variables, health literacy, and self-reported clinical information. A total of 83.2% of the participants signed the informed consent. In the multivariable model after lasso selection and according to the relative bias, the most important predictors were the level of education (OR = 2.13, bias = 20.7%), health insurance status (OR = 2.04, bias = 7.8%), need of another study language (OR = 0.21, bias = 39.4%), health literacy (OR = 2.20, bias = 10.0%), and region of origin (not included in the lasso regression model, bias = 9.2%). Clinical characteristics were not significantly associated with the main outcome and had low relative biases (≤ 2.7%). Refusers were more likely to have social vulnerabilities than consenters, but clinical vulnerabilities were similar in both groups. The non-response bias probably occurred in this prison population. Therefore, efforts should be made to reach this vulnerable population, improve participation in research, and ensure a fair and equitable distribution of research benefits.

Suggested Citation

  • Stéphanie Baggio & Leonel Gonçalves & Patrick Heller & Hans Wolff & Laurent Gétaz, 2023. "Refusal to participate in research among hard-to-reach populations: The case of detained persons," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0282083
    DOI: 10.1371/journal.pone.0282083
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282083
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282083&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:mpr:mprres:3280 is not listed on IDEAS
    2. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Alberti, Federica & Mantilla, César, 2020. "Provision of noxious facilities using a market-like mechanism: A simple implementation in the lab," Working papers 35, Red Investigadores de Economía.
    3. Sandro Radovanovic & Boris Delibasic & Milija Suknovic & Dajana Matovic, 2019. "Where will the next ski injury occur? A system for visual and predictive analytics of ski injuries," Operational Research, Springer, vol. 19(4), pages 973-992, December.
    4. Zhang, Guike & Gao, Zengan & Dong, June & Mei, Dexiang, 2023. "Machine learning approaches for constructing the national anti-money laundering index," Finance Research Letters, Elsevier, vol. 52(C).
    5. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    6. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    7. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," SFB 649 Discussion Papers 2014-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    9. Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
    10. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    11. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    12. Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
    13. Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    15. repec:plo:pcbi00:1005234 is not listed on IDEAS
    16. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    17. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    18. Anirban Das & Alec G. Sheffield & Anirvan S. Nandy & Monika P. Jadi, 2024. "Brain-state mediated modulation of inter-laminar dependencies in visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    20. Tuantuan Zhang & Xingwen Jiang & Song Yang & Junwen Chen & Zhenning Li, 2022. "A predictable prospect of the South Asian summer monsoon," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    21. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.