IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0281370.html
   My bibliography  Save this article

Using a latent Hawkes process for epidemiological modelling

Author

Listed:
  • Stamatina Lamprinakou
  • Axel Gandy
  • Emma McCoy

Abstract

Understanding the spread of COVID-19 has been the subject of numerous studies, highlighting the significance of reliable epidemic models. Here, we introduce a novel epidemic model using a latent Hawkes process with temporal covariates for modelling the infections. Unlike other models, we model the reported cases via a probability distribution driven by the underlying Hawkes process. Modelling the infections via a Hawkes process allows us to estimate by whom an infected individual was infected. We propose a Kernel Density Particle Filter (KDPF) for inference of both latent cases and reproduction number and for predicting the new cases in the near future. The computational effort is proportional to the number of infections making it possible to use particle filter type algorithms, such as the KDPF. We demonstrate the performance of the proposed algorithm on synthetic data sets and COVID-19 reported cases in various local authorities in the UK, and benchmark our model to alternative approaches.

Suggested Citation

  • Stamatina Lamprinakou & Axel Gandy & Emma McCoy, 2023. "Using a latent Hawkes process for epidemiological modelling," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-27, March.
  • Handle: RePEc:plo:pone00:0281370
    DOI: 10.1371/journal.pone.0281370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281370
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0281370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0281370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arianna Agosto & Paolo Giudici, 2020. "A Poisson Autoregressive Model to Understand COVID-19 Contagion Dynamics," Risks, MDPI, vol. 8(3), pages 1-8, July.
    2. Shinsuke Koyama & Taiki Horie & Shigeru Shinomoto, 2021. "Estimating the time-varying reproduction number of COVID-19 with a state-space method," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-18, January.
    3. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    2. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    4. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    5. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    6. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    7. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    8. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    9. Johan Dahlin & Fredrik Lindsten & Thomas B. Schon, 2015. "Quasi-Newton particle Metropolis-Hastings," Papers 1502.03656, arXiv.org, revised Sep 2015.
    10. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    11. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    12. Nonejad, Nima, 2015. "Flexible model comparison of unobserved components models using particle Gibbs with ancestor sampling," Economics Letters, Elsevier, vol. 133(C), pages 35-39.
    13. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    14. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    15. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    16. Delis, Manthos D. & Iosifidi, Maria & Kazakis, Pantelis & Ongena, Steven & Tsionas, Mike G., 2022. "Management practices and M&A success," Journal of Banking & Finance, Elsevier, vol. 134(C).
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    18. Th I Götz & G Lahmer & V Strnad & Ch Bert & B Hensel & A M Tomé & E W Lang, 2017. "A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-31, September.
    19. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2022. "The COVID-19 pandemic, policy responses and stock markets in the G20," International Economics, Elsevier, vol. 172(C), pages 77-90.
    20. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.