IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0276225.html
   My bibliography  Save this article

Tri-objective generator maintenance scheduling model based on sequential strategy

Author

Listed:
  • Shatha Abdulhadi Muthana
  • Ku Ruhana Ku-Mahamud

Abstract

A multi-objective modeling approach is required in the context of generator maintenance scheduling (GMS) for power generation systems. Most multi-objective modeling approaches in practice are modeled using a periodic system approach that caters for a fixed maintenance window. This approach is not suitable for different types of generating units and cannot extend the generator lifespan. To address this issue, this study proposes a tri-objective GMS model with three conflicting objectives based on the sequential system approach that accounts for operating hours and start-up times. The GMS model’s objectives are to minimize the total operation cost, maximize system reliability and minimize violation. The main difference between the proposed tri-objective GMS model and other multi-objective GMS models, is that the proposed model uses a sequential strategy based on operating hours and start-up times. In addition, the proposed model has considered the most important criteria in scheduling the generator maintenance, and this reflects the real-life requirements in electrical power systems. A multi-objective graph model is also developed to generate the maintenance units scheduling and used in developing the proposed Pareto ant colony system (PACS) algorithm. A PACS algorithm is proposed to implement the model and obtain solution for GMS. The performance of the proposed model was evaluated using the IEEE RTS 26, 32, and 36-unit systems dataset. The performance metrics used comprise the GMS model objectives. The experimental results showed that the obtained solution from the proposed tri-objective GMS model was a robust solution by considering the different initial operational hours of the units.

Suggested Citation

  • Shatha Abdulhadi Muthana & Ku Ruhana Ku-Mahamud, 2022. "Tri-objective generator maintenance scheduling model based on sequential strategy," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-29, October.
  • Handle: RePEc:plo:pone00:0276225
    DOI: 10.1371/journal.pone.0276225
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276225
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0276225&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0276225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moncayo-Martínez, Luis A. & Zhang, David Z., 2011. "Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design," International Journal of Production Economics, Elsevier, vol. 131(1), pages 407-420, May.
    2. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    3. Karl Doerner & Walter Gutjahr & Richard Hartl & Christine Strauss & Christian Stummer, 2004. "Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection," Annals of Operations Research, Springer, vol. 131(1), pages 79-99, October.
    4. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    5. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    2. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    3. Moncayo-Martínez, Luis A. & Zhang, David Z., 2013. "Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 18-28.
    4. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    5. Weili Li, 2025. "Optimizing Enterprise Productivity in the Digital Economy: A Genetic Algorithm and Multi-Objective Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 2670-2688, March.
    6. Wu, Jinchao & Chen, Bokui & Zhang, Kai & Zhou, Jun & Miao, Lixin, 2018. "Ant pheromone route guidance strategy in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 591-603.
    7. Fitsum Salehu Kebede & Jean-Christophe Olivier & Salvy Bourguet & Mohamed Machmoum, 2021. "Reliability Evaluation of Renewable Power Systems through Distribution Network Power Outage Modelling," Energies, MDPI, vol. 14(11), pages 1-25, May.
    8. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    9. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    10. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    11. Jian Xiong & Rui Wang & Jiang Jiang, 2019. "Weapon Selection and Planning Problems Using MOEA/D with Distance-Based Divided Neighborhoods," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    12. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    13. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    14. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    15. Liao, Rundong & Manfren, Massimiliano & Nastasi, Benedetto, 2025. "Off-grid PV systems modelling and optimisation for rural communities - leveraging understandability and interpretability of modelling tools," Energy, Elsevier, vol. 324(C).
    16. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    17. Bahar Cennet Okumuşoğlu & Beste Basciftci & Burak Kocuk, 2024. "An Integrated Predictive Maintenance and Operations Scheduling Framework for Power Systems Under Failure Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1335-1358, September.
    18. Mahbub, Md Shahriar & Viesi, Diego & Cattani, Sara & Crema, Luigi, 2017. "An innovative multi-objective optimization approach for long-term energy planning," Applied Energy, Elsevier, vol. 208(C), pages 1487-1504.
    19. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    20. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.