IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0273469.html
   My bibliography  Save this article

Measuring the impact of social-distancing, testing, and undetected asymptomatic cases on the diffusion of COVID-19

Author

Listed:
  • Seungyoo Jeon

Abstract

The key to overcoming COVID-19 lies, arguably, in the diffusion process of confirmed cases. In view of this, this study has two main aims: first, to investigate the unique characteristics of COVID-19—for the existence of asymptomatic cases—and second, to determine the best strategy to suppress the diffusion of COVID-19. To this end, this study proposes a new compartmental model—the SICUR model—which can address undetected asymptomatic cases and considers the three main drivers of the diffusion of COVID-19: the degree of social distancing, the speed of testing, and the detection rate of infected cases. Taking each country’s situation into account, it is suggested that susceptible cases can be classified into two categories based on their sources of occurrence: internal and external factors. The results show that the ratio of undetected asymptomatic cases to infected cases will, ceteris paribus, be 6.9% for South Korea and 22.4% for the United States. This study also quantitatively shows that to impede the diffusion of COVID-19: firstly, strong social distancing is necessary when the detection rate is high, and secondly, fast testing is effective when the detection rate is low.

Suggested Citation

  • Seungyoo Jeon, 2022. "Measuring the impact of social-distancing, testing, and undetected asymptomatic cases on the diffusion of COVID-19," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-24, August.
  • Handle: RePEc:plo:pone00:0273469
    DOI: 10.1371/journal.pone.0273469
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273469
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0273469&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0273469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yutaka Okabe & Akira Shudo, 2020. "A Mathematical Model of Epidemics—A Tutorial for Students," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    2. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
    2. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    3. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    4. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    5. Guseo, Renato, 2016. "Diffusion of innovations dynamics, biological growth and catenary function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 1-10.
    6. Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
    7. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Wedad Elmaghraby & Altan Gülcü & P{i}nar Keskinocak, 2008. "Designing Optimal Preannounced Markdowns in the Presence of Rational Customers with Multiunit Demands," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 126-148, June.
    10. Vakratsas, Demetrios & Kolsarici, Ceren, 2008. "A dual-market diffusion model for a new prescription pharmaceutical," International Journal of Research in Marketing, Elsevier, vol. 25(4), pages 282-293.
    11. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    12. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    13. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    15. Li, Feng & Du, Timon C. & Wei, Ying, 2020. "Enhancing supply chain decisions with consumers’ behavioral factors: An illustration of decoy effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    16. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    17. Jonathan Lee & Peter Boatwright & Wagner A. Kamakura, 2003. "A Bayesian Model for Prelaunch Sales Forecasting of Recorded Music," Management Science, INFORMS, vol. 49(2), pages 179-196, February.
    18. Bruce G. S. Hardie & Peter S. Fader & Robert Zeithammer, 2003. "Forecasting new product trial in a controlled test market environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 391-410.
    19. Orbach Yair & Fruchter Gila E., 2010. "A Utility-Based Diffusion Model Applied to the Digital Camera Case," Review of Marketing Science, De Gruyter, vol. 8(1), pages 1-28, June.
    20. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.