IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267153.html
   My bibliography  Save this article

Motivations to reciprocate cooperation and punish defection are calibrated by estimates of how easily others can switch partners

Author

Listed:
  • Sakura Arai
  • John Tooby
  • Leda Cosmides

Abstract

Evolutionary models of dyadic cooperation demonstrate that selection favors different strategies for reciprocity depending on opportunities to choose alternative partners. We propose that selection has favored mechanisms that estimate the extent to which others can switch partners and calibrate motivations to reciprocate and punish accordingly. These estimates should reflect default assumptions about relational mobility: the probability that individuals in one’s social world will have the opportunity to form relationships with new partners. This prior probability can be updated by cues present in the immediate situation one is facing. The resulting estimate of a partner’s outside options should serve as input to motivational systems regulating reciprocity: Higher estimates should down-regulate the use of sanctions to prevent defection by a current partner, and up-regulate efforts to attract better cooperative partners by curating one’s own reputation and monitoring that of others. We tested this hypothesis using a Trust Game with Punishment (TGP), which provides continuous measures of reciprocity, defection, and punishment in response to defection. We measured each participant’s perception of relational mobility in their real-world social ecology and experimentally varied a cue to partner switching. Moreover, the study was conducted in the US (n = 519) and Japan (n = 520): societies that are high versus low in relational mobility. Across conditions and societies, higher perceptions of relational mobility were associated with increased reciprocity and decreased punishment: i.e., those who thought that others have many opportunities to find new partners reciprocated more and punished less. The situational cue to partner switching was detected, but relational mobility in one’s real social world regulated motivations to reciprocate and punish, even in the experimental setting. The current research provides evidence that motivational systems are designed to estimate varying degrees of partner choice in one’s social ecology and regulate reciprocal behaviors accordingly.

Suggested Citation

  • Sakura Arai & John Tooby & Leda Cosmides, 2022. "Motivations to reciprocate cooperation and punish defection are calibrated by estimates of how easily others can switch partners," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-28, April.
  • Handle: RePEc:plo:pone00:0267153
    DOI: 10.1371/journal.pone.0267153
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267153
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267153&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan E Bone & Brian Wallace & Redouan Bshary & Nichola J Raihani, 2015. "The Effect of Power Asymmetries on Cooperation and Punishment in a Prisoner’s Dilemma Game," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-15, January.
    2. David Joyce & John Kennison & Owen Densmore & Stephen Guerin & Shawn Barr & Eric Charles & Nicholas S. Thompson, 2006. "My Way or the Highway: a More Naturalistic Model of Altruism Tested in an Iterative Prisoners' Dilemma," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(2), pages 1-4.
    3. Justin W Martin & Fiery Cushman, 2015. "To Punish or to Leave: Distinct Cognitive Processes Underlie Partner Control and Partner Choice Behaviors," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    4. Max M Krasnow & Leda Cosmides & Eric J Pedersen & John Tooby, 2012. "What Are Punishment and Reputation for?," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    5. Jonathan E Bone & Brian Wallace & Redouan Bshary & Nichola J Raihani, 2016. "Power Asymmetries and Punishment in a Prisoner’s Dilemma with Variable Cooperative Investment," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    6. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    7. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    2. Qu, Xinglong & Zhou, Changli & Cao, Zhigang & Yang, Xiaoguang, 2016. "Conditional dissociation as a punishment mechanism in the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 215-223.
    3. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    4. Giangiacomo Bravo, 2007. "Imitation and Cooperation in Different Helping Games," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(1), pages 1-8.
    5. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    7. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    8. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    9. Frauke von Bieberstein & Andrea Essl & Kathrin Friedrich, 2021. "Empathy: A clue for prosocialty and driver of indirect reciprocity," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    10. Charness, Gary & Du, Ninghua & Yang, Chun-Lei, 2011. "Trust and trustworthiness reputations in an investment game," Games and Economic Behavior, Elsevier, vol. 72(2), pages 361-375, June.
    11. Cubitt, Robin P. & Drouvelis, Michalis & Gächter, Simon & Kabalin, Ruslan, 2011. "Moral judgments in social dilemmas: How bad is free riding?," Journal of Public Economics, Elsevier, vol. 95(3), pages 253-264.
    12. Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
    13. Gaudeul, Alexia & Keser, Claudia & Müller, Stephan, 2021. "The evolution of morals under indirect reciprocity," Games and Economic Behavior, Elsevier, vol. 126(C), pages 251-277.
    14. Ben-Ner, Avner & Putterman, Louis & Kong, Fanmin & Magan, Dan, 2004. "Reciprocity in a two-part dictator game," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 333-352, March.
    15. Engelmann, Dirk & Fischbacher, Urs, 2009. "Indirect reciprocity and strategic reputation building in an experimental helping game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 399-407, November.
    16. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    17. Suzuki, Shinsuke & Akiyama, Eizo, 2008. "Evolutionary stability of first-order-information indirect reciprocity in sizable groups," Theoretical Population Biology, Elsevier, vol. 73(3), pages 426-436.
    18. Molina, José Alberto & Ferrer, Alfredo & Gimenez-Nadal, José Ignacio & Gracia-Lazaro, Carlos & Moreno, Yamir & Sanchez, Angel, 2016. "The Effect of Kinship on Intergenerational Cooperation: A Lab Experiment with Three Generations," IZA Discussion Papers 9842, Institute of Labor Economics (IZA).
    19. Liang, Pinghan & Meng, Juanjuan, 2016. "Favor transmission and social image concern: An experimental study," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 14-21.
    20. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.