IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v100y2017icp20-23.html
   My bibliography  Save this article

Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game

Author

Listed:
  • Deng, Zhenghong
  • Wang, Shengnan
  • Gu, Zhiyang
  • Xu, Juwei
  • Song, Qun

Abstract

Adopting the strategy of neighbor who performs better is crucial for the evolution of cooperation in evolutionary games, in that such an action may help you get higher benefit and even evolutionary advantages. Inspired by this idea, here we introduce a parameter α to control the selection of preferred opponents between the most successful neighbor and one random neighbor. For α equaling to zero, it turns to the traditional case of random selection, while positive α favors the player that has high popularity. Besides, considering heterogeneity as one important factor of cooperation promotion, in this work, the population is divided into two types. Players of type A, whose proportion is v, select opponent depending on the parameter α, while players of type B, whose proportion is 1−v, select opponent randomly. Through numerous computing simulations, we find that popularity-driven heterogeneous preference selection can truly promote cooperation, which can be attributed to the leading role of cooperators with type A. These players can attract cooperators of type B forming compact clusters, and thus lead to a more beneficial situation for resisting the invasion of defectors.

Suggested Citation

  • Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
  • Handle: RePEc:eee:chsofr:v:100:y:2017:i:c:p:20-23
    DOI: 10.1016/j.chaos.2017.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Chu & Jinzhuo Liu & Chen Shen & Jiahua Jin & Lei Shi, 2017. "Win-stay-lose-learn promotes cooperation in the prisoner’s dilemma game with voluntary participation," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-8, February.
    2. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    5. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    6. Zhang, Hai-Feng & Jin, Zhen & Wang, Zhen, 2014. "Cooperation and popularity in spatial games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 86-94.
    7. Shen, Chen & Lu, Jun & Shi, Lei, 2016. "Does coevolution setup promote cooperation in spatial prisoner's dilemma game?," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 201-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Li, HuXiong & X, Fei-Wang, 2022. "Uneven Resources network promotes cooperation in the prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Bin, Liu & Yue, Wu, 2023. "Co-evolution of reputation-based preference selection and resource allocation with multigame on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    3. Zhang, Xin-Jie & Tang, Yong & Xiong, Jason & Wang, Wei-Jia & Zhang, Yi-Cheng, 2020. "Ranking game on networks: The evolution of hierarchical society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Zhang, Lan & Huang, Changwei, 2023. "Preferential selection to promote cooperation on degree–degree correlation networks in spatial snowdrift games," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    6. Xie, Kai & Liu, Xingwen & Chen, Hao & Yang, Jun, 2022. "Preferential selection and expected payoff drive cooperation in spatial voluntary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    2. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Li, Yu, 2019. "Strategy preference promotes cooperation in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 181-188.
    3. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    4. Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    5. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    6. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    7. Yang Wang & Binghong Wang, 2015. "Evolution of Cooperation on Spatial Network with Limited Resource," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-9, August.
    8. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    9. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    10. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    11. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    12. Genki Ichinose & Masaya Saito & Shinsuke Suzuki, 2013. "Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner’s Dilemma," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    13. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    14. Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
    15. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    16. Wang, Zhen & Chen, Tong & Wang, Yongjie, 2017. "Leadership by example promotes the emergence of cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 100-105.
    17. Sheen S. Levine & Michael J. Prietula, 2014. "Open Collaboration for Innovation: Principles and Performance," Organization Science, INFORMS, vol. 25(5), pages 1414-1433, October.
    18. Rezaei, Golriz & Kirley, Michael, 2012. "Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6199-6211.
    19. Geng, Yini & Shen, Chen & Guo, Hao & Chu, Chen & Yu, Dalei & Shi, Lei, 2017. "Historical payoff promotes cooperation in voluntary prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 145-149.
    20. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:100:y:2017:i:c:p:20-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.