IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v54y2013icp65-70.html
   My bibliography  Save this article

The influence of age-driven investment on cooperation in spatial public goods games

Author

Listed:
  • Tian, Lin-Lin
  • Li, Ming-Chu
  • Lu, Kun
  • Zhao, Xiao-Wei
  • Wang, Zhen

Abstract

In social and biological systems, the individual capacity of contribution usually varies during its lifespan. In this paper, we study the effect of age-driven investment on cooperation in the public goods game under quenched age (QueA), natural aging (NatA) and strategy aging (StrA) rules. By investigating the evolutionary dynamics and the spatial distribution on a square lattice, we find that cooperator clusters become more robust under the specific age structure, in which young cooperators usually locate on the margins. The StrA rule is the most effective at enhancing cooperation because the age characteristic helps the organization of cooperators defend against the invasion of defectors. The other rules require higher synergy factors for cooperation dominance where the old and young cooperators are well-mixed. In addition, the QueA rule improves cooperation by accelerating the extinction of defectors and the NatA rule performs the worst because the aging process breaks up the cooperative clusters. Our results may provide insight into the impact of age-dependent contributions on cooperative behaviors in real world situations.

Suggested Citation

  • Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
  • Handle: RePEc:eee:chsofr:v:54:y:2013:i:c:p:65-70
    DOI: 10.1016/j.chaos.2013.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    2. Chunyan Zhang & Jianlei Zhang & Guangming Xie & Long Wang & Matjaž Perc, 2011. "Evolution of Interactions and Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Zhen & Wang, Juan, 2012. "Evaluating fitness by integrating the highest payoff within the neighborhood promotes cooperation in social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6440-6447.
    5. Zhen Wang & Lin Wang & Zi-Yu Yin & Cheng-Yi Xia, 2012. "Inferring Reputation Promotes the Evolution of Cooperation in Spatial Social Dilemma Games," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    6. Zhen Wang & Zhen Wang & Yuan-Han Yang & Ming-Xing Yu & Li-Guo Liao, 2012. "Age-Related Preferential Selection Can Promote Cooperation In The Prisoner'S Dilemma Game," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-11.
    7. Zhang, Haifeng & Yang, Hanxin & Du, Wenbo & Wang, Binghong & Cao, Xianbin, 2010. "Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1099-1104.
    8. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    9. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    10. Wang, Zhen & Du, Wen-Bo & Cao, Xian-Bin & Zhang, Lian-Zhong, 2011. "Integrating neighborhoods in the evaluation of fitness promotes cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1234-1239.
    11. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    12. Li, Jing & Wu, Te & Zeng, Gang & Wang, Long, 2012. "Selective investment promotes cooperation in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3924-3929.
    13. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Yi-ling & Wang, Jin-song & Chen, Zeng-qiang, 2011. "Enhancement of cooperation in prisoner’s dilemma game on weighted lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4602-4609.
    14. Cheng-Yi Xia & Sandro Meloni & Yamir Moreno, 2012. "Effects Of Environment Knowledge On Agglomeration And Cooperation In Spatial Public Goods Games," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Lu, Peng, 2015. "Individual choice and reputation distribution of cooperative behaviors among heterogeneous groups," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 39-46.
    6. Tian, Lin-Lin & Li, Ming-Chu & Wang, Zhen, 2016. "Cooperation enhanced by indirect reciprocity in spatial prisoner’s dilemma games for social P2P systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1252-1260.
    7. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Xia, Ke, 2021. "Average abundance function of multi-player threshold public goods without initial endowment evolutionary game model under differential aspiration levels and redistribution mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Hong Ding & Lin Cao & Yizhi Ren & Kim-Kwang Raymond Choo & Benyun Shi, 2016. "Reputation-Based Investment Helps to Optimize Group Behaviors in Spatial Lattice Networks," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    10. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    2. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    3. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    4. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    5. Kohei Miyaji & Jun Tanimoto & Zhen Wang & Aya Hagishima & Naoki Ikegaya, 2013. "Direct Reciprocity in Spatial Populations Enhances R-Reciprocity As Well As ST-Reciprocity," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    6. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    7. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    8. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    9. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Ding, Chenxi & Wang, Juan & Zhang, Ying, 2016. "Impact of self interaction on the evolution of cooperation in social spatial dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 393-399.
    11. Lu, Peng, 2015. "Individual choice and reputation distribution of cooperative behaviors among heterogeneous groups," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 39-46.
    12. Lu, Peng & Wang, Fang, 2015. "Heterogeneity of inferring reputation probability in cooperative behaviors for the spatial prisoners’ dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 367-378.
    13. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    14. Ding, Shuai & Wang, Juan & Ruan, Sumei & Xia, Chengyi, 2015. "Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 91-99.
    15. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    16. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    17. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    18. Genki Ichinose & Masaya Saito & Shinsuke Suzuki, 2013. "Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner’s Dilemma," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    19. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    20. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:54:y:2013:i:c:p:65-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.