IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234315.html
   My bibliography  Save this article

Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species

Author

Listed:
  • Carolina Müller
  • Manja Hethke
  • Frank Riedel
  • Gerhard Helle

Abstract

Stable carbon and oxygen isotope ratios of raw pollen sampled from nine abundant tree species growing in natural habitats of central and northern Europe were investigated to understand the intra- and inter-specific variability of pollen-isotope values. All species yielded specific δ13Cpollen and δ18Opollen values and patterns, which can be ascribed to their physiology and habitat preferences. Broad-leaved trees flowering early in the year before leaf proliferation (Alnus glutinosa and Corylus avellana) exhibited on average 2.6‰ lower δ13Cpollen and 3.1‰ lower δ18Opollen values than broad-leaved and coniferous trees flowering during mid and late spring (Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). Mean species-specific δ13Cpollen values did not change markedly over time, whereas δ18Opollen values of two consecutive years were often statistically distinct. An intra-annual analysis of B. pendula and P. sylvestris pollen revealed increasing δ18Opollen values during the final weeks of pollen development. However, the δ13Cpollen values remained consistent throughout the pollen-maturation process. Detailed intra-individual analysis yielded circumferential and height-dependent variations within carbon and oxygen pollen-isotopes and the sampling position on a tree accounted for differences of up to 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen. A comparison of isotope ranges from different geographic settings revealed gradients between maritime and continental as well as between high and low altitudinal study sites. The results of stepwise regression analysis demonstrated, that carbon and oxygen pollen-isotopes also reflect local non-climate environmental conditions. A detailed understanding of isotope patterns and ranges in modern pollen is necessary to enhance the accuracy of palaeoclimate investigations on δ13C and δ18O of fossil pollen. Furthermore, pollen-isotope values are species-specific and the analysis of species growing during different phenophases may be valuable for palaeoweather reconstructions of different seasons.

Suggested Citation

  • Carolina Müller & Manja Hethke & Frank Riedel & Gerhard Helle, 2020. "Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
  • Handle: RePEc:plo:pone00:0234315
    DOI: 10.1371/journal.pone.0234315
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234315
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234315&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Philippe Peylin & Markus Reichstein & Sebastiaan Luyssaert & Hank Margolis & Jingyun Fang & Alan Barr & Anping Chen & Achim Grelle & David Y. Ho, 2008. "Net carbon dioxide losses of northern ecosystems in response to autumn warming," Nature, Nature, vol. 451(7174), pages 49-52, January.
    2. Kampstra, Peter, 2008. "Beanplot: A Boxplot Alternative for Visual Comparison of Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(c01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    2. Chaobin Zhang & Ying Zhang & Zhaoqi Wang & Jianlong Li & Inakwu Odeh, 2019. "Monitoring Phenology in the Temperate Grasslands of China from 1982 to 2015 and Its Relation to Net Primary Productivity," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    3. Markus Demary, 2017. "Yield curve responses to market sentiments and monetary policy," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 309-344, July.
    4. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    5. Miroslav Sirota & Marie Juanchich, 2015. "A direct and comprehensive test of two postulates of politeness theory applied to uncertainty communication," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 10(3), pages 232-240, May.
    6. Manuel Mendoza-Carranza & Elisabet Ejarque & Leopold A J Nagelkerke, 2018. "Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    7. Barrios Ramos, Iris & Espinoza Tenorio, Alejandro & Mesa Jurado, M. Azahara & Tovilla Hernández, Cristian & Mendoza Carranza, Manuel, 2021. "Percepción social de la salinización del agua para uso doméstico en Puerto Madero, Chiapas, México," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 21(01), June.
    8. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    9. Andreas M Neophytou & Elizabeth M Noth & Sa Liu & Sadie Costello & S Katharine Hammond & Mark R Cullen & Ellen A Eisen, 2016. "Ischemic Heart Disease Incidence in Relation to Fine versus Total Particulate Matter Exposure in a U.S. Aluminum Industry Cohort," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    10. Xiaoshuai Wei & Mingze Xu & Hongxian Zhao & Xinyue Liu & Zifan Guo & Xinhao Li & Tianshan Zha, 2024. "Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index," Land, MDPI, vol. 13(3), pages 1-20, March.
    11. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    12. Nölte, Anja & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model," Ecological Modelling, Elsevier, vol. 438(C).
    13. Xuan Wu & Liang Jiao & Dashi Du & Ruhong Xue & Xingyu Ding & Mengyuan Wei & Peng Zhang, 2022. "Spatial–Temporal Pattern and Influencing Factors of Vegetation Phenology and Net Primary Productivity in the Qilian Mountains of Northwest China," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    14. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    16. Haidong Li & Yingkui Li & Yuanyun Gao & Changxin Zou & Shouguang Yan & Jixi Gao, 2016. "Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    17. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    18. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    19. Michael C Thrun & Tino Gehlert & Alfred Ultsch, 2020. "Analyzing the fine structure of distributions," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    20. Chen, Bin & Arain, M. Altaf & Chen, Jing M. & Croft, Holly & Grant, Robert F. & Kurz, Werner A. & Bernier, Pierre & Guindon, Luc & Price, David & Wang, Ziyu, 2016. "Evaluating the impacts of climate variability and cutting and insect defoliation on the historical carbon dynamics of a boreal black spruce forest landscape in eastern Canada," Ecological Modelling, Elsevier, vol. 321(C), pages 98-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.