IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p399-d1361312.html
   My bibliography  Save this article

Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index

Author

Listed:
  • Xiaoshuai Wei

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Mingze Xu

    (Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)

  • Hongxian Zhao

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Xinyue Liu

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Zifan Guo

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Xinhao Li

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Tianshan Zha

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

Abstract

The affiliation between vegetation phenology and seasonal climate (start and end times of the growing season, or SOS and EOS) provides a basis for acquiring insight into the dynamic response of terrestrial ecosystems to the effects of climate change. Although climate warming is an important factor affecting the advancement or delay of plant phenology, understanding the sensitivity of phenology to seasonal variation in climate factors (e.g., local air temperature, precipitation) is generally lacking under different climate backgrounds. In this study, we investigated the interannual variability of grassland phenology and its spatial variation in temperate regions of China based on satellite-derived products for the normalized difference vegetation index (NDVI) and weather data acquired from 2001 to 2020. We found that due to differences in local climate conditions, the effects of seasonal warming and precipitation on phenology were divergent or even opposite during the 20 years. The sensitivities of the start of growing season (SOS) to both spring temperature and last-winter precipitation was controlled by mean annual precipitation in terms of spatial variation. The SOS in the semi-humid (200–400 mm) region was most sensitive to spring temperature, advancing 5.24 days for each 1 °C rise in the average spring temperature ( p < 0.05), while it was most sensitive to last-winter precipitation in arid regions (<200 mm), with SOS advancing up to 2.23 days for every 1 mm increase in the last-winter precipitation ( p < 0.05). The end of growing season (EOS) was sensitive to autumn temperature, being delayed 10.13 days for each 1 °C rise in the average autumn temperature in regions with temperatures between −10 °C and −5 °C ( p < 0.05). The uncertainty in the determination of the EOS could conceivably be greater than the determination of the SOS due to the dual effects of pre-autumn climate and growth constraints induced by declining fall temperatures. The effect of atmospheric warming on grassland phenology was lessened with increased atmospheric and soil aridity, suggesting that the interaction of regional drought and climate warming is an important source for local-to-regional differences and uncertainties in grass phenological response.

Suggested Citation

  • Xiaoshuai Wei & Mingze Xu & Hongxian Zhao & Xinyue Liu & Zifan Guo & Xinhao Li & Tianshan Zha, 2024. "Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index," Land, MDPI, vol. 13(3), pages 1-20, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:399-:d:1361312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen J. Thackeray & Peter A. Henrys & Deborah Hemming & James R. Bell & Marc S. Botham & Sarah Burthe & Pierre Helaouet & David G. Johns & Ian D. Jones & David I. Leech & Eleanor B. Mackay & Dario , 2016. "Phenological sensitivity to climate across taxa and trophic levels," Nature, Nature, vol. 535(7611), pages 241-245, July.
    2. Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Philippe Peylin & Markus Reichstein & Sebastiaan Luyssaert & Hank Margolis & Jingyun Fang & Alan Barr & Anping Chen & Achim Grelle & David Y. Ho, 2008. "Net carbon dioxide losses of northern ecosystems in response to autumn warming," Nature, Nature, vol. 451(7174), pages 49-52, January.
    3. Ren, Xiaoli & He, Honglin & Zhang, Li & Li, Fan & Liu, Min & Yu, Guirui & Zhang, Junhui, 2018. "Modeling and uncertainty analysis of carbon and water fluxes in a broad-leaved Korean pine mixed forest based on model-data fusion," Ecological Modelling, Elsevier, vol. 379(C), pages 39-53.
    4. Li, Xianglan & Liang, Shunlin & Yu, Guirui & Yuan, Wenping & Cheng, Xiao & Xia, Jiangzhou & Zhao, Tianbao & Feng, Jinming & Ma, Zhuguo & Ma, Mingguo & Liu, Shaomin & Chen, Jiquan & Shao, Changliang & , 2013. "Estimation of gross primary production over the terrestrial ecosystems in China," Ecological Modelling, Elsevier, vol. 261, pages 80-92.
    5. Chaoyang Wu & Jie Peng & Philippe Ciais & Josep Peñuelas & Huanjiong Wang & Santiago Beguería & T. Andrew Black & Rachhpal S. Jassal & Xiaoyang Zhang & Wenping Yuan & Eryuan Liang & Xiaoyue Wang & Hao, 2022. "Increased drought effects on the phenology of autumn leaf senescence," Nature Climate Change, Nature, vol. 12(10), pages 943-949, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    2. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    3. Chaobin Zhang & Ying Zhang & Zhaoqi Wang & Jianlong Li & Inakwu Odeh, 2019. "Monitoring Phenology in the Temperate Grasslands of China from 1982 to 2015 and Its Relation to Net Primary Productivity," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    4. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    5. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    6. Roberto Novella-Fernandez & Roland Brandl & Stefan Pinkert & Dirk Zeuss & Christian Hof, 2023. "Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yan, Hao & Wang, Shao-qiang & Billesbach, Dave & Oechel, Walter & Bohrer, Gil & Meyers, Tilden & Martin, Timothy A. & Matamala, Roser & Phillips, Richard P. & Rahman, Faiz & Yu, Qin & Shugart, Herman , 2015. "Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants," Ecological Modelling, Elsevier, vol. 297(C), pages 42-59.
    8. Nölte, Anja & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model," Ecological Modelling, Elsevier, vol. 438(C).
    9. Xuan Wu & Liang Jiao & Dashi Du & Ruhong Xue & Xingyu Ding & Mengyuan Wei & Peng Zhang, 2022. "Spatial–Temporal Pattern and Influencing Factors of Vegetation Phenology and Net Primary Productivity in the Qilian Mountains of Northwest China," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    10. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    12. Haidong Li & Yingkui Li & Yuanyun Gao & Changxin Zou & Shouguang Yan & Jixi Gao, 2016. "Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    13. Alexandru-Mihai Pintilioaie & Beatrice Daniela Filote & Lucian Sfîcă & Emanuel Ștefan Baltag, 2022. "Weather Influence on Native and Alien Mantis Dynamics and Their Abundance in the Current Climate Change Conditions," Sustainability, MDPI, vol. 14(23), pages 1-10, November.
    14. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    15. Conor C. Taff & J. Ryan. Shipley, 2023. "Inconsistent shifts in warming and temperature variability are linked to reduced avian fitness," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Carolina Müller & Manja Hethke & Frank Riedel & Gerhard Helle, 2020. "Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
    17. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Liam D. Bailey & Martijn Pol & Frank Adriaensen & Aneta Arct & Emilio Barba & Paul E. Bellamy & Suzanne Bonamour & Jean-Charles Bouvier & Malcolm D. Burgess & Anne Charmantier & Camillo Cusimano & Bla, 2022. "Bird populations most exposed to climate change are less sensitive to climatic variation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Temidayo Olowoyeye & Mariusz Ptak & Mariusz Sojka, 2023. "How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?," Resources, MDPI, vol. 12(9), pages 1-19, September.
    20. Chen, Bin & Arain, M. Altaf & Chen, Jing M. & Croft, Holly & Grant, Robert F. & Kurz, Werner A. & Bernier, Pierre & Guindon, Luc & Price, David & Wang, Ziyu, 2016. "Evaluating the impacts of climate variability and cutting and insect defoliation on the historical carbon dynamics of a boreal black spruce forest landscape in eastern Canada," Ecological Modelling, Elsevier, vol. 321(C), pages 98-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:399-:d:1361312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.