IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v321y2016icp98-109.html
   My bibliography  Save this article

Evaluating the impacts of climate variability and cutting and insect defoliation on the historical carbon dynamics of a boreal black spruce forest landscape in eastern Canada

Author

Listed:
  • Chen, Bin
  • Arain, M. Altaf
  • Chen, Jing M.
  • Croft, Holly
  • Grant, Robert F.
  • Kurz, Werner A.
  • Bernier, Pierre
  • Guindon, Luc
  • Price, David
  • Wang, Ziyu

Abstract

In this study, the Carbon and Nitrogen coupled Canadian Land Surface Scheme (CN-CLASS) was used to investigate the impact of climate variability, seasonal weather effects, disturbance, and CO2 fertilization effects on the historical carbon (C) dynamics of an eastern Canadian boreal forest landscape (6275ha) from 1928 to 2008. The model was parameterized with ecological, soil texture, forest inventory and historical disturbance data and driven by hourly meteorological data constructed from the historical climate records. Before performing the landscape-level simulation, model results were evaluated against site-level eddy covariance (EC) measurements. Landscape-level simulated C fluxes showed that the forest ecosystem was a small C sink in all of the years prior to cutting and insect defoliation in 1963, which resulted in the removal of 23849Mg C from the forest landscape. As a consequence, the study area was a large C source in 1963 (net biome productivity, NBP=−537gCm−2yr−1). After that, the forest landscape was mainly a net annual C sink, with total ecosystem C stocks increasing from 14.8 to 16.0kgCm−2 by 2008, during which total biomass increased from 3.1 to 4.2kgCm−2. Analysis of landscape-level, age-detrended, simulated C fluxes for the undisturbed forest landscape from 1928 to 2002 indicated that summer temperature was the dominant control on C fluxes with higher temperature causing a much faster increase in landscape-level annual Re than that of GPP (i.e. 12.3 vs. 1.3gCm−2yr−1°C−1, respectively). Scenario analysis suggested that forest disturbances had a less profound impact on landscape-level C fluxes and stocks compared to inter-annual climate variability in this landscape. Climate sensitivity analysis revealed that landscape-level simulated C fluxes and stocks were sensitive to the change of air temperature, while only dead organic matter (DOM) and soil organic matter (SOM) were sensitive to the change of precipitation. This study will help to explore the impact of future climate change scenarios and forest management on boreal forest landscapes.

Suggested Citation

  • Chen, Bin & Arain, M. Altaf & Chen, Jing M. & Croft, Holly & Grant, Robert F. & Kurz, Werner A. & Bernier, Pierre & Guindon, Luc & Price, David & Wang, Ziyu, 2016. "Evaluating the impacts of climate variability and cutting and insect defoliation on the historical carbon dynamics of a boreal black spruce forest landscape in eastern Canada," Ecological Modelling, Elsevier, vol. 321(C), pages 98-109.
  • Handle: RePEc:eee:ecomod:v:321:y:2016:i:c:p:98-109
    DOI: 10.1016/j.ecolmodel.2015.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015005335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    2. Paul Jarvis & Sune Linder, 2000. "Constraints to growth of boreal forests," Nature, Nature, vol. 405(6789), pages 904-905, June.
    3. Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Philippe Peylin & Markus Reichstein & Sebastiaan Luyssaert & Hank Margolis & Jingyun Fang & Alan Barr & Anping Chen & Achim Grelle & David Y. Ho, 2008. "Net carbon dioxide losses of northern ecosystems in response to autumn warming," Nature, Nature, vol. 451(7174), pages 49-52, January.
    4. Wang, Z. & Grant, R.F. & Arain, M.A. & Bernier, P.Y. & Chen, B. & Chen, J.M. & Govind, A. & Guindon, L. & Kurz, W.A. & Peng, C. & Price, D.T. & Stinson, G. & Sun, J. & Trofymowe, J.A. & Yeluripati, J., 2013. "Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results," Ecological Modelling, Elsevier, vol. 260(C), pages 25-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Xi & Shi, Peili & Song, Minghua & Zong, Ning & He, Yongtao & Zhao, Guangshai & Zhang, Xianzhou, 2019. "Carbon flux phenology and net ecosystem productivity simulated by a bioclimatic index in an alpine steppe-meadow on the Tibetan Plateau," Ecological Modelling, Elsevier, vol. 394(C), pages 66-75.
    2. Olunifesi Adekunle Suraj, 2016. "Managing Telecommunications for Development: An Analysis of Intellectual Capital in Nigerian Telecommunication Industry," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-30, March.
    3. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    4. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    5. M. Ionita & P. Scholz & S. Chelcea, 2016. "Assessment of droughts in Romania using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1483-1498, April.
    6. Sakinah Mat Zin & Ahmad Azrin Adnan & Iskandar Hasan Abdullah, 2017. "How Can Ibn Khaldun’s Economic Philosophy Revive the Intellectual Capital of Entrepreneurs," Asian Social Science, Canadian Center of Science and Education, vol. 13(6), pages 164-164, June.
    7. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    8. Cherchye, Laurens & Knox Lovell, C.A. & Moesen, Wim & Van Puyenbroeck, Tom, 2007. "One market, one number? A composite indicator assessment of EU internal market dynamics," European Economic Review, Elsevier, vol. 51(3), pages 749-779, April.
    9. Sandy Tubeuf & Marc Perronnin, 2008. "New prospects in the analysis of inequalities in health: a measurement of health encompassing several dimensions of health," Health, Econometrics and Data Group (HEDG) Working Papers 08/01, HEDG, c/o Department of Economics, University of York.
    10. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    11. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    12. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    13. Queiroz, Bernardo L & Gonzaga, Marcos Roberto & Nogales, Ana Maria & Torrente, Bruno & de Abreu, Daisy Maria Xavier, 2019. "Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends," OSF Preprints pj3sx, Center for Open Science.
    14. Szara Katarzyna, 2019. "Uneven Distribution Possibilities of Creative Capital Development in Rural Aareas (Case Study of the Podkarpackie Communes, Poland)," Eastern European Countryside, Sciendo, vol. 25(1), pages 145-169, December.
    15. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    16. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    17. Martin Dubrovsky & Miroslav Trnka & Ian Holman & Eva Svobodova & Paula Harrison, 2015. "Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators," Climatic Change, Springer, vol. 128(3), pages 169-186, February.
    18. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2020. "Improving the Strategic Benchmarking of Intellectual Capital Management in Logistics Service Providers," Post-Print hal-03188190, HAL.
    19. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    20. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:321:y:2016:i:c:p:98-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.