IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p714-d134944.html
   My bibliography  Save this article

Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China

Author

Listed:
  • Shishi Liu

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Wei Du

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Hang Su

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Shanqin Wang

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Qingfeng Guan

    (National Engineering Research Center of GIS, China University of Geosciences (Wuhan), Wuhan 430074, China
    School of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)

Abstract

This study quantified the impacts of land-use/cover change (LUCC) on gross primary production (GPP) during 2000–2013 in a typical densely urbanized Chinese city, Wuhan. GPP was estimated at 30-m spatial resolution using annual land cover maps, meteorological data of the baseline year, and the normalized difference vegetation index (NDVI), which was generated with the spatial and temporal adaptive reflectance fusion model (STARFM) based on Landsat and MODIS images. The results showed that approximately 309.95 Gg C was lost over 13 years, which was mainly due to the conversion from cropland to built-up areas. The interannual variation of GPP was affected by the change of vegetation composition, especially the increasing relative fraction of forests. The loss of GPP due to the conversion from forest to cropland fluctuated through the study period, but showed a sharp decrease in 2007 and 2008. The gain of GPP due to the conversion from cropland to forest was low between 2001 and 2009, but increased dramatically between 2009 and 2013. The change rate map showed an increasing trend along the highways, and a decreasing trend around the metropolitan area and lakes. The results indicated that carbon consequences should be considered before land management policies are put forth.

Suggested Citation

  • Shishi Liu & Wei Du & Hang Su & Shanqin Wang & Qingfeng Guan, 2018. "Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:714-:d:134944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    2. Jillian W. Gregg & Clive G. Jones & Todd E. Dawson, 2003. "Urbanization effects on tree growth in the vicinity of New York City," Nature, Nature, vol. 424(6945), pages 183-187, July.
    3. Li, Xianglan & Liang, Shunlin & Yu, Guirui & Yuan, Wenping & Cheng, Xiao & Xia, Jiangzhou & Zhao, Tianbao & Feng, Jinming & Ma, Zhuguo & Ma, Mingguo & Liu, Shaomin & Chen, Jiquan & Shao, Changliang & , 2013. "Estimation of gross primary production over the terrestrial ecosystems in China," Ecological Modelling, Elsevier, vol. 261, pages 80-92.
    4. Zhigang Li & Jialong Zhong & Zishu Sun & Wunian Yang, 2017. "Spatial Pattern of Carbon Sequestration and Urban Sustainability: Analysis of Land-Use and Carbon Emission in Guang’an, China," Sustainability, MDPI, vol. 9(11), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Cao & Yucen Wang & Guoyu Li & Xiaoqian Fang, 2019. "Vegetation Response to Urban Landscape Spatial Pattern Change in the Yangtze River Delta, China," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Shoma Jingu, 2020. "Temporal Continuities of Grasslands and Forests as Patches of Natural Land in Urban Landscapes: A Case Study of the Tsukuba Science City," Land, MDPI, vol. 9(11), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    2. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    3. Tianqi Rong & Pengyan Zhang & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Jiaxin Yang & Hao Chang & Linna Ge, 2020. "Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–20," Energies, MDPI, vol. 13(10), pages 1-18, May.
    4. Xiaoshuai Wei & Mingze Xu & Hongxian Zhao & Xinyue Liu & Zifan Guo & Xinhao Li & Tianshan Zha, 2024. "Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index," Land, MDPI, vol. 13(3), pages 1-20, March.
    5. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    6. Yan, Hao & Wang, Shao-qiang & Billesbach, Dave & Oechel, Walter & Bohrer, Gil & Meyers, Tilden & Martin, Timothy A. & Matamala, Roser & Phillips, Richard P. & Rahman, Faiz & Yu, Qin & Shugart, Herman , 2015. "Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants," Ecological Modelling, Elsevier, vol. 297(C), pages 42-59.
    7. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    8. Ji, Xi, 2015. "Taking the pulse of urban economy: From the perspective of systems ecology," Ecological Modelling, Elsevier, vol. 318(C), pages 36-48.
    9. Xueyan Wang & Jing Yao & Shuai Yu & Chunping Miao & Wei Chen & Xingyuan He, 2018. "Street Trees in a Chinese Forest City: Structure, Benefits and Costs," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    10. S. Roderick Zhang & Bilal Farooq, 2022. "Interpretable and Actionable Vehicular Greenhouse Gas Emission Prediction at Road link-level," Papers 2206.09073, arXiv.org.
    11. Xin Yao & Min Zhao & Francisco J. Escobedo, 2017. "What Causal Drivers Influence Carbon Storage in Shanghai, China’s Urban and Peri-Urban Forests?," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    12. Marchi, Michela & Jørgensen, Sven Erik & Pulselli, Federico Maria & Marchettini, Nadia & Bastianoni, Simone, 2012. "Modelling the carbon cycle of Siena Province (Tuscany, central Italy)," Ecological Modelling, Elsevier, vol. 225(C), pages 40-60.
    13. Xiaomin Guo & Chuanglin Fang, 2021. "Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province," Land, MDPI, vol. 10(12), pages 1-18, November.
    14. Wenbo Cai & Wanting Peng, 2021. "Exploring Spatiotemporal Variation of Carbon Storage Driven by Land Use Policy in the Yangtze River Delta Region," Land, MDPI, vol. 10(11), pages 1-12, October.
    15. Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
    16. Li, Xiran & Zhu, Zaichun & Zeng, Hui & Piao, Shilong, 2016. "Estimation of gross primary production in China (1982–2010) with multiple ecosystem models," Ecological Modelling, Elsevier, vol. 324(C), pages 33-44.
    17. Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
    18. Amal Najihah Muhamad Nor & Hasifah Abdul Aziz & Siti Aisyah Nawawi & Rohazaini Muhammad Jamil & Muhamad Azahar Abas & Kamarul Ariffin Hambali & Abdul Hafidz Yusoff & Norfadhilah Ibrahim & Nur Hairunni, 2021. "Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    19. Yang, Dewei & Lin, Yanjie & Gao, Lijie & Sun, Yanwei & Wang, Run & Zhang, Guoqin, 2013. "Process-based investigation of cross-boundary environmental pressure from urban household consumption," Energy Policy, Elsevier, vol. 55(C), pages 626-635.
    20. Zhang, Chi & Wu, Jianguo & Grimm, Nancy B. & McHale, Melissa & Buyantuyev, Alexander, 2013. "A hierarchical patch mosaic ecosystem model for urban landscapes: Model development and evaluation," Ecological Modelling, Elsevier, vol. 250(C), pages 81-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:714-:d:134944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.