IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i2p107-113.html
   My bibliography  Save this article

Modeling the carbon cycle of urban systems

Author

Listed:
  • Churkina, Galina

Abstract

Although more than 80% of carbon dioxide emissions originate in urban areas, the role of human settlements in the biosphere evolution and in global carbon cycling remains largely neglected. Understanding the relationships between the form and pattern of urban development and the carbon cycle is however crucial for estimating future trajectories of greenhouse gas concentrations in the atmosphere and can facilitate mitigation of climate change. In this paper I review state-of-the-art in modeling of urban carbon cycle. I start with the properties of urban ecosystems from the ecosystem theory point of view. Then I discuss key elements of an urban system and to which degree they are represented in the existing models. In conclusions I highlight necessity of including biophysical as well as human related carbon fluxes in an urban carbon cycle model and necessity of collecting relevant data.

Suggested Citation

  • Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:107-113
    DOI: 10.1016/j.ecolmodel.2008.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Jillian W. Gregg & Clive G. Jones & Todd E. Dawson, 2003. "Urbanization effects on tree growth in the vicinity of New York City," Nature, Nature, vol. 424(6945), pages 183-187, July.
    3. ., 1994. "Technical Change and Technological Regimes," Chapters, in: Geoffrey M. Hodgson & Warren J. Samuels & Marc R. Tool (ed.), The Elgar Companion to Institutional and Evolutionary Economics, volume 0, chapter 127, Edward Elgar Publishing.
    4. Ram Oren & David S. Ellsworth & Kurt H. Johnsen & Nathan Phillips & Brent E. Ewers & Chris Maier & Karina V.R. Schäfer & Heather McCarthy & George Hendrey & Steven G. McNulty & Gabriel G. Katul, 2001. "Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere," Nature, Nature, vol. 411(6836), pages 469-472, May.
    5. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    6. ., 1994. "Technology, Theory of," Chapters, in: Geoffrey M. Hodgson & Warren J. Samuels & Marc R. Tool (ed.), The Elgar Companion to Institutional and Evolutionary Economics, volume 0, chapter 127, Edward Elgar Publishing.
    7. Robert J.W. Tijssen & Anthony F.J. Van Raan, 1994. "Mapping Changes in Science and Technology," Evaluation Review, , vol. 18(1), pages 98-115, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yao & Min Zhao & Francisco J. Escobedo, 2017. "What Causal Drivers Influence Carbon Storage in Shanghai, China’s Urban and Peri-Urban Forests?," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    2. Ming-Che Hu & Chihhao Fan & Tailin Huang & Chi-Fang Wang & Yu-Hui Chen, 2018. "Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management," IJERPH, MDPI, vol. 16(1), pages 1-11, December.
    3. Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
    4. Yang, Dewei & Lin, Yanjie & Gao, Lijie & Sun, Yanwei & Wang, Run & Zhang, Guoqin, 2013. "Process-based investigation of cross-boundary environmental pressure from urban household consumption," Energy Policy, Elsevier, vol. 55(C), pages 626-635.
    5. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    6. Shishi Liu & Wei Du & Hang Su & Shanqin Wang & Qingfeng Guan, 2018. "Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    7. Marchi, Michela & Jørgensen, Sven Erik & Pulselli, Federico Maria & Marchettini, Nadia & Bastianoni, Simone, 2012. "Modelling the carbon cycle of Siena Province (Tuscany, central Italy)," Ecological Modelling, Elsevier, vol. 225(C), pages 40-60.
    8. Ji, Xi, 2015. "Taking the pulse of urban economy: From the perspective of systems ecology," Ecological Modelling, Elsevier, vol. 318(C), pages 36-48.
    9. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    10. Liya Yang & Honghui Zhang & Xinqi Liao & Haiqi Wang & Yong Bian & Geng Liu & Weiling Luo, 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province," IJERPH, MDPI, vol. 20(3), pages 1-22, February.
    11. Zhang, Chi & Wu, Jianguo & Grimm, Nancy B. & McHale, Melissa & Buyantuyev, Alexander, 2013. "A hierarchical patch mosaic ecosystem model for urban landscapes: Model development and evaluation," Ecological Modelling, Elsevier, vol. 250(C), pages 81-100.
    12. S. Roderick Zhang & Bilal Farooq, 2022. "Interpretable and Actionable Vehicular Greenhouse Gas Emission Prediction at Road link-level," Papers 2206.09073, arXiv.org.
    13. Min Fu & Lixin Tian & Gaogao Dong & Ruijin Du & Peipei Zhou & Minggang Wang, 2016. "Modeling on Regional Atmosphere-Soil-Land Plant Carbon Cycle Dynamic System," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    14. Xin Yang & Guangyin Shang & Xiangzheng Deng, 2022. "Estimation, decomposition and reduction potential calculation of carbon emissions from urban construction land: evidence from 30 provinces in China during 2000–2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7958-7975, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hufrish Majra & Rajan Saxena & Sumi Jha & Srinath Jagannathan, 2016. "Structuring Technology Applications for Enhanced Customer Experience: Evidence from Indian Air Travellers," Global Business Review, International Management Institute, vol. 17(2), pages 351-374, April.
    2. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    3. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    4. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    7. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    8. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    9. Massimo Palme & Agnese Salvati, 2020. "Sustainability and Urban Metabolism," Sustainability, MDPI, vol. 12(1), pages 1-3, January.
    10. Yun-Yun Ko & Yin-Hao Chiu, 2020. "Empirical Study of Urban Development Evaluation Indicators Based on the Urban Metabolism Concept," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    11. Koenraad Danneels, 2023. "THE POLITICS OF URBAN ECOLOGY: Paul Duvigneaud and the Rise of Ecological Urbanism in Brussels during the 1970s," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 47(5), pages 792-808, September.
    12. Daniela Perrotti, 2019. "Evaluating urban metabolism assessment methods and knowledge transfer between scientists and practitioners: A combined framework for supporting practice-relevant research," Environment and Planning B, , vol. 46(8), pages 1458-1479, October.
    13. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    15. Mongin, P., 1998. "Does Optimization Imply Rationality?," Papers 9817, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
    16. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    17. Jennie Moore, 2015. "Ecological Footprints and Lifestyle Archetypes: Exploring Dimensions of Consumption and the Transformation Needed to Achieve Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-17, April.
    18. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    19. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    20. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:107-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.