IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232534.html
   My bibliography  Save this article

A model for the assessment of bluetongue virus serotype 1 persistence in Spain

Author

Listed:
  • Cecilia Aguilar-Vega
  • Eduardo Fernández-Carrión
  • Javier Lucientes
  • José Manuel Sánchez-Vizcaíno

Abstract

Bluetongue virus (BTV) is an arbovirus of ruminants that has been circulating in Europe continuously for more than two decades and has become endemic in some countries such as Spain. Spain is ideal for BTV epidemiological studies since BTV outbreaks from different sources and serotypes have occurred continuously there since 2000; BTV-1 has been reported there from 2007 to 2017. Here we develop a model for BTV-1 endemic scenario to estimate the risk of an area becoming endemic, as well as to identify the most influential factors for BTV-1 persistence. We created abundance maps at 1-km2 spatial resolution for the main vectors in Spain, Culicoides imicola and Obsoletus and Pulicaris complexes, by combining environmental satellite data with occurrence models and a random forest machine learning algorithm. The endemic model included vector abundance and host-related variables (farm density). The three most relevant variables in the endemic model were the abundance of C. imicola and Obsoletus complex and density of goat farms (AUC 0.86); this model suggests that BTV-1 is more likely to become endemic in central and southwestern regions of Spain. It only requires host- and vector-related variables to identify areas at greater risk of becoming endemic for bluetongue. Our results highlight the importance of suitable Culicoides spp. prediction maps for bluetongue epidemiological studies and decision-making about control and eradication measures.

Suggested Citation

  • Cecilia Aguilar-Vega & Eduardo Fernández-Carrión & Javier Lucientes & José Manuel Sánchez-Vizcaíno, 2020. "A model for the assessment of bluetongue virus serotype 1 persistence in Spain," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0232534
    DOI: 10.1371/journal.pone.0232534
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232534
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232534&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    3. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    4. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    5. Ollech, Daniel & Webel, Karsten, 2020. "A random forest-based approach to identifying the most informative seasonality tests," Discussion Papers 55/2020, Deutsche Bundesbank.
    6. Ilias Thomas & Alex M. Dickens & Jussi P. Posti & Endre Czeiter & Daniel Duberg & Tim Sinioja & Matilda Kråkström & Isabel R. A. Retel Helmrich & Kevin K. W. Wang & Andrew I. R. Maas & Ewout W. Steyer, 2022. "Serum metabolome associated with severity of acute traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Mahyar Jahaninasab & Ehsan Taheran & S. Alireza Zarabadi & Mohammadreza Aghaei & Ali Rajabpour, 2023. "A Novel Approach for Reducing Feature Space Dimensionality and Developing a Universal Machine Learning Model for Coated Tubes in Cross-Flow Heat Exchangers," Energies, MDPI, vol. 16(13), pages 1-13, July.
    9. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    10. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    11. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    12. Liu, Yehong & Yin, Guosheng, 2020. "The Delaunay triangulation learner and its ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    13. Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
    14. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    15. Jia Geng & Mingsheng Yuan & Shen Xu & Tingting Bai & Yang Xiao & Xiaopeng Li & Dong Xu, 2022. "Urban Expansion Was the Main Driving Force for the Decline in Ecosystem Services in Hainan Island during 1980–2015," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    16. Ingrida Vaiciulyte & Zivile Kalsyte & Leonidas Sakalauskas & Darius Plikynas, 2017. "Assessment of market reaction on the share performance on the basis of its visualization in 2D space," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(2), pages 309-318, March.
    17. Guoju Wang & Rongjie Zhu & Xiang Gong & Xiaoling Li & Yuanzheng Gao & Wenming Yin & Renzheng Wang & Huan Li & Huiwang Gao & Tao Zou, 2025. "A New Hybrid Deep Sequence Model for Decomposing, Interpreting, and Predicting Sulfur Dioxide Decline in Coastal Cities of Northern China," Sustainability, MDPI, vol. 17(6), pages 1-30, March.
    18. Danielle Baghernejad, 2017. "Class Based Variable Importance for Medical Decision Making," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(5), pages 1328-1335, October.
    19. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    20. Benjamin David, 2017. "Model economic phenomena with CART and Random Forest algorithms," Working Papers hal-04141619, HAL.
    21. Chandler Gabriel & Stevens Guy, 2012. "An Exploratory Study of Minor League Baseball Statistics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(4), pages 1-28, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.