IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221271.html
   My bibliography  Save this article

TSSCM: A synergism-based three-step cascade model for influence maximization on large-scale social networks

Author

Listed:
  • Xiaohui Zhao
  • Fang’ai Liu
  • Shuning Xing
  • Qianqian Wang

Abstract

Identification of the most influential spreaders that maximize information propagation in social networks is a classic optimization problem, called the influence maximization (IM) problem. A reasonable diffusion model that can accurately simulate information propagation in social networks is the key step to efficiently solving the IM problem. Synergism of neighbor nodes plays an important role in information propagation dynamics. Some known diffusion models have considered the reinforcement mechanism in defining the activation threshold. Most of these models focus on the synergetic effects of nodes on their common neighbors, but the accumulation of synergism has been neglected in previous studies. Inspired by these facts, we first discuss the catalytic role of synergism in the spreading dynamics of social networks and then propose a novel diffusion model called the synergism-based three-step cascade model (TSSCM) based on the above analysis and the three-degree influence theory. Finally, we devise an algorithm for solving the IM problem based on the TSSCM. Experiments on five real large-scale social networks demonstrate the efficacy of our method, which achieves competitive results in terms of influence spreading compared to the four other algorithms tested.

Suggested Citation

  • Xiaohui Zhao & Fang’ai Liu & Shuning Xing & Qianqian Wang, 2019. "TSSCM: A synergism-based three-step cascade model for influence maximization on large-scale social networks," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0221271
    DOI: 10.1371/journal.pone.0221271
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221271
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221271&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He & Chenyuan Jin, 2024. "A study on the influence of the characteristics of key opinion leaders on consumers’ purchase intention in live streaming commerce: based on dual-systems theory," Electronic Commerce Research, Springer, vol. 24(2), pages 1235-1265, June.
    2. Liuan Wang & Lu (Lucy) Yan & Tongxin Zhou & Xitong Guo & Gregory R. Heim, 2020. "Understanding Physicians’ Online-Offline Behavior Dynamics: An Empirical Study," Information Systems Research, INFORMS, vol. 31(2), pages 537-555, June.
    3. Ariel BenYishay & A. Mushfiq Mobarak, 2014. "Social Learning and Communication," NBER Working Papers 20139, National Bureau of Economic Research, Inc.
    4. Vineet Kumar & K. Sudhir, 2019. "Can Friends Seed More Buzz and Adoption"," Cowles Foundation Discussion Papers 2178, Cowles Foundation for Research in Economics, Yale University.
    5. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    6. Bradley T. Shapiro, 2018. "Informational Shocks, Off-Label Prescribing, and the Effects of Physician Detailing," Management Science, INFORMS, vol. 64(12), pages 5925-5945, December.
    7. Yuho Chung & Yiwei Li & Jianmin Jia, 2021. "Exploring embeddedness, centrality, and social influence on backer behavior: the role of backer networks in crowdfunding," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 925-946, September.
    8. Tolga Akcura & Kemal Altinkemer & Hailiang Chen, 0. "Noninfluentials and information dissemination in the microblogging community," Information Technology and Management, Springer, vol. 0, pages 1-18.
    9. Plé, Loïc & Demangeot, Catherine, 2020. "Social contagion of online and offline deviant behaviors and its value outcomes: The case of tourism ecosystems," Journal of Business Research, Elsevier, vol. 117(C), pages 886-896.
    10. Surya Pathak & P. V. Sundar Balakrishnan, 2025. "The paradox of product scarcity: Catalyzing the speed of innovation diffusion," Journal of the Academy of Marketing Science, Springer, vol. 53(3), pages 804-824, May.
    11. Christa Brelsford & Caterina De Bacco, 2018. "Are `Water Smart Landscapes' Contagious? An epidemic approach on networks to study peer effects," Papers 1801.10516, arXiv.org.
    12. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    13. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Lena Steinhoff & Denni Arli & Scott Weaven & Irina V. Kozlenkova, 2019. "Online relationship marketing," Journal of the Academy of Marketing Science, Springer, vol. 47(3), pages 369-393, May.
    15. Angel Sevil & Alfonso Cruz & Tomas Reyes & Roberto Vassolo, 2022. "When Being Large Is Not an Advantage: How Innovation Impacts the Sustainability of Firm Performance in Natural Resource Industries," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    16. Tolga Akcura & Kemal Altinkemer & Hailiang Chen, 2018. "Noninfluentials and information dissemination in the microblogging community," Information Technology and Management, Springer, vol. 19(2), pages 89-106, June.
    17. Bartikowski, Boris & Richard, Marie-Odile & Gierl, Heribert, 2023. "Fit or misfit of culture in marketing communication? Development of the culture-ladenness fit index," Journal of Business Research, Elsevier, vol. 167(C).
    18. Nguyen, Hang T. & Chaudhuri, Malika, 2019. "Making new products go viral and succeed," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 39-62.
    19. T. Marshalkina V. & Т. Маршалкина В., 2015. "Модели Прогнозирования Спроса На Инновационную Продукцию // Models For Innovative Products Demand," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 6, pages 171-178.
    20. Michael P. Leung, 2019. "Inference in Models of Discrete Choice with Social Interactions Using Network Data," Papers 1911.07106, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.