IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138148.html
   My bibliography  Save this article

Analysing Local Sparseness in the Macaque Brain Network

Author

Listed:
  • Raghavendra Singh
  • Seema Nagar
  • Amit A Nanavati

Abstract

Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways.

Suggested Citation

  • Raghavendra Singh & Seema Nagar & Amit A Nanavati, 2015. "Analysing Local Sparseness in the Macaque Brain Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0138148
    DOI: 10.1371/journal.pone.0138148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Olaf Sporns & Rolf Kötter, 2004. "Motifs in Brain Networks," PLOS Biology, Public Library of Science, vol. 2(11), pages 1-1, October.
    3. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    4. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    5. Logan Harriger & Martijn P van den Heuvel & Olaf Sporns, 2012. "Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    6. Betzel, Richard F. & Griffa, Alessandra & Avena-Koenigsberger, Andrea & Goñi, Joaquín & Thiran, Jean-Philippe & Hagmann, Patric & Sporns, Olaf, 2013. "Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity," Network Science, Cambridge University Press, vol. 1(3), pages 353-373, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    2. repec:plo:pone00:0023460 is not listed on IDEAS
    3. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    4. Logan Harriger & Martijn P van den Heuvel & Olaf Sporns, 2012. "Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Riccardo Muolo & Joseph D. O’Brien & Timoteo Carletti & Malbor Asllani, 2024. "Persistence of chimera states and the challenge for synchronization in real-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-16, January.
    6. Disheng Tang & Joel Zylberberg & Xiaoxuan Jia & Hannah Choi, 2024. "Stimulus type shapes the topology of cellular functional networks in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    8. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    9. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    10. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    11. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    12. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    13. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    14. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    15. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    16. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    17. Sanjeev Goyal & Adrien Vigier, 2014. "Attack, Defence, and Contagion in Networks," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1518-1542.
    18. Britta Hoyer & Kris De Jaegher, 2023. "Network disruption and the common-enemy effect," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 117-155, March.
    19. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    20. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    21. Abbasiharofteh, Milad & Hermans, Frans, 2025. "Using archetypal analysis to derive a typology of knowledge networks in European bioclusters," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(1), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.