IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v12y1984i3p235-261.html
   My bibliography  Save this article

Structural Cohesion and Equivalence Explanations of Social Homogeneity

Author

Listed:
  • NOAH E. FRIEDKIN

    (University of California, Santa Barbara)

Abstract

This article is concerned with the problem of the relative contributions of structural cohesion and equivalence to the explanation of social homogeneity. Structural Cohesion models are explanatory models in that they are based on causal assumptions concerning the effects of structural cohesion upon individuals' attitudes and behaviors. The results of the present analysis indicate that direct and short indirect communication channels are critical components of cohesion models that largely account for their success in predicting social homogeneity. However, not all social homogeneity is caused by structural cohesion. Structural equivalence models offer a general approach for mapping the distribution of social homogeneity in a population. Rejection of the null hypothesis of no difference in homogeneity between structurally equivalent and nonequivalent persons supports the construct validity of structural equivalence with respect to its use as an indicator of social homogeneity. The present results provide little support for the additional claim that structural equivalence provides some explanation of social homogeneity.

Suggested Citation

  • Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
  • Handle: RePEc:sae:somere:v:12:y:1984:i:3:p:235-261
    DOI: 10.1177/0049124184012003001
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124184012003001
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124184012003001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    2. R. Luce, 1950. "Connectivity and generalized cliques in sociometric group structure," Psychometrika, Springer;The Psychometric Society, vol. 15(2), pages 169-190, June.
    3. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Violet T. Ho & Laurie L. Levesque, 2005. "With a Little Help from My Friends (and Substitutes): Social Referents and Influence in Psychological Contract Fulfillment," Organization Science, INFORMS, vol. 16(3), pages 275-289, June.
    2. Eduardo Kunzel Teixeira & Mirian Oliveira, 2018. "Editorial board interlocking in knowledge management and intellectual capital research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1853-1869, December.
    3. Motamarri, Saradhi & Liyanage, N.D.L. & Smart, Rosemary, 2014. "An agent based model for networking of scholars," Australasian marketing journal, Elsevier, vol. 22(1), pages 54-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    2. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    3. Korotaev, Andrey (Коротаев, Андрей) & Shulgin, Sergey (Шульгин, Сергей) & Zinkina, Yulia (Зинькина, Юлия), 2017. "Country Risk Analysis Based on Demographic and Socio-Economic Data [Анализ Страновых Рисков С Использованием Демографических И Социально-Экономических Данных]," Working Papers 031715, Russian Presidential Academy of National Economy and Public Administration.
    4. Richard C. Roistacher, 1974. "A Review of Mathematical Methods in Sociometry," Sociological Methods & Research, , vol. 3(2), pages 123-171, November.
    5. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    6. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    7. Yuichi Asahiro & Tomohiro Kubo & Eiji Miyano, 2019. "Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 143-161, October.
    8. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    9. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    10. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    11. Stephen P. Borgatti & Daniel S. Halgin, 2011. "On Network Theory," Organization Science, INFORMS, vol. 22(5), pages 1168-1181, October.
    12. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    13. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.
    14. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Roberts, Leigh, 2014. "Consistent estimation of breakpoints in time series, with application to wavelet analysis of Citigroup returns," Working Paper Series 18815, Victoria University of Wellington, School of Economics and Finance.
    16. Simone Celant, 2013. "Two-mode networks: the measurement of efficiency in the profiles of actors’ participation in the occasions," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3289-3302, October.
    17. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    18. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    19. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    20. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:12:y:1984:i:3:p:235-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.