IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136580.html
   My bibliography  Save this article

Crop Species Diversity Changes in the United States: 1978–2012

Author

Listed:
  • Jonathan Aguilar
  • Greta G Gramig
  • John R Hendrickson
  • David W Archer
  • Frank Forcella
  • Mark A Liebig

Abstract

Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability.

Suggested Citation

  • Jonathan Aguilar & Greta G Gramig & John R Hendrickson & David W Archer & Frank Forcella & Mark A Liebig, 2015. "Crop Species Diversity Changes in the United States: 1978–2012," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0136580
    DOI: 10.1371/journal.pone.0136580
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136580
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136580&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William E. Nganje & Dean A. Bangsund & F. Larry Leistritz & William W. Wilson & Napoleon M. Tiapo, 2004. "Regional Economic Impacts of Fusarium Head Blight in Wheat and Barley," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 26(3), pages 332-347.
    2. Di Falco, Salvatore & Perrings, Charles, 2005. "Crop biodiversity, risk management and the implications of agricultural assistance," Ecological Economics, Elsevier, vol. 55(4), pages 459-466, December.
    3. Jekanowski, Mark & Vocke, Gary, 2013. "Crop Outlook Reflects Near-Term Prices and Longer Term Market Trends," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 04, pages 1-1, May.
    4. Nickerson, Cynthia & Morehart, Mitchell & Kuethe, Todd & Beckman, Jayson & Ifft, Jennifer & Williams, Ryan, 2012. "Trends in U.S. Farmland Values and Ownership," Economic Information Bulletin 291935, United States Department of Agriculture, Economic Research Service.
    5. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    6. Salvatore Di Falco & Charles Perrings, 2003. "Crop Genetic Diversity, Productivity and Stability of Agroecosystems. A Theoretical and Empirical Investigation," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(2), pages 207-216, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Fabri & Sam Vermeulen & Steven Van Passel & Sergei Schaub, 2024. "Crop diversification and the effect of weather shocks on Italian farmers' income and income risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 955-980, September.
    2. Stefan Baumgärtner & Martin F. Quaas, 2010. "Managing increasing environmental risks through agrobiodiversity and agrienvironmental policies," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 483-496, September.
    3. Stefan Baumgärtner & Martin F. Quaas, 2007. "Agro-biodiversity as natural insurance and the development of financial insurance markets," Working Paper Series in Economics 61, University of Lüneburg, Institute of Economics.
    4. Elisa Gatto & Guido Signorino, 2014. "Crop-diversity and Cereal Production under the CAP Reform: Evidence from Italy," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2014(3), pages 35-50.
    5. Nastis, Stefanos A. & Michailidis, Anastasios & Mattas, Konstadinos, 2011. "Crop biodiversity repercussions of subsidized organic farming in Greece," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114628, European Association of Agricultural Economists.
    6. Eugenio Figueroa B. & Roberto Pasten C., 2012. "The insurance value of forests in supplying climate regulation," Working Papers wp372, University of Chile, Department of Economics.
    7. Elisa Gatto & Guido Signorino, 2011. "Long-run relationship between crop-biodiversity and cereal production under the CAP reform: evidence from Italian regions," ERSA conference papers ersa11p964, European Regional Science Association.
    8. Laurent Penet & Denis Cornet & Jean-Marc Blazy & Angela Alleyne & Emilie Simone Barthe & François Bussière & Sébastien Guyader & Claudie Pavis & Dalila Pétro, 2016. "Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers’ Strategies, Networks, and Disease Experience," Post-Print hal-01608280, HAL.
    9. Lee, Heera & Bogner, Christina & Lee, Saem & Koellner, Thomas, 2016. "Crop selection under price and yield fluctuation: Analysis of agro-economic time series from South Korea," Agricultural Systems, Elsevier, vol. 148(C), pages 1-11.
    10. Müller, Birgit & Quaas, Martin F. & Frank, Karin & Baumgärtner, Stefan, 2011. "Pitfalls and potential of institutional change: Rain-index insurance and the sustainability of rangeland management," Ecological Economics, Elsevier, vol. 70(11), pages 2137-2144, September.
    11. Baumgärtner, Stefan & Quaas, Martin, 2005. "The private and public insurance value of conservative biodiversity management," UFZ Discussion Papers 27/2005, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    12. Riccardo D’Alberto & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2018. "AES Impact Evaluation With Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    13. Ochoa. M, W. Santiago & Härtl, Fabian H. & Paul, Carola & Knoke, Thomas, 2019. "Cropping systems are homogenized by off-farm income – Empirical evidence from small-scale farming systems in dry forests of southern Ecuador," Land Use Policy, Elsevier, vol. 82(C), pages 204-219.
    14. Bareille, François & Dupraz, Pierre, 2016. "Biodiversity productive effects in milk farms of western France: a multi-output primal system," 149th Seminar, October 27-28, 2016, Rennes, France 244774, European Association of Agricultural Economists.
    15. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    16. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    17. Lipy Adhikari & Sabarnee Tuladhar & Abid Hussain & Kamal Aryal, 2019. "Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    18. Li, Xin, 2016. "The Farmland Valuation Revisited," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 4(2), pages 1-14, April.
    19. Silvia Scaramuzzi & Sara Gabellini & Giovanni Belletti & Andrea Marescotti, 2021. "Agrobiodiversity-Oriented Food Systems between Public Policies and Private Action: A Socio-Ecological Model for Sustainable Territorial Development," Sustainability, MDPI, vol. 13(21), pages 1-32, November.
    20. Johannes Kotschi & Bernd Horneburg, 2018. "The Open Source Seed Licence: A novel approach to safeguarding access to plant germplasm," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-7, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.