IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002551.html
   My bibliography  Save this article

Exploring the Complexity of the HIV-1 Fitness Landscape

Author

Listed:
  • Roger D Kouyos
  • Gabriel E Leventhal
  • Trevor Hinkley
  • Mojgan Haddad
  • Jeannette M Whitcomb
  • Christos J Petropoulos
  • Sebastian Bonhoeffer

Abstract

Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place. Author Summary: Evolutionary adaptation can be understood as populations moving uphill on landscapes, in which height corresponds to evolutionary fitness. Although such fitness landscapes are central to evolutionary theory, there is currently a lack of biologically realistic examples. Here we analyze large-scale fitness landscapes derived from in vitro fitness measurements of HIV-1. We find that these landscapes are very rugged and that, accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. Moreover, the landscapes contain large networks along which fitness changes only minimally. While the relative extent to which mutations affect fitness on their own or in combination with other mutations is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged than expected from the individual and pair-wise effects of mutations. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.

Suggested Citation

  • Roger D Kouyos & Gabriel E Leventhal & Trevor Hinkley & Mojgan Haddad & Jeannette M Whitcomb & Christos J Petropoulos & Sebastian Bonhoeffer, 2012. "Exploring the Complexity of the HIV-1 Fitness Landscape," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-9, March.
  • Handle: RePEc:plo:pgen00:1002551
    DOI: 10.1371/journal.pgen.1002551
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002551
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002551&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Walter Fontana & Peter Schuster, 1998. "Continuity in Evolution: On the Nature of Transition," Working Papers 98-04-030, Santa Fe Institute.
    2. Peter D. Keightley & Sarah P. Otto, 2006. "Interference among deleterious mutations favours sex and recombination in finite populations," Nature, Nature, vol. 443(7107), pages 89-92, September.
    3. W. Fontana & P. Schuster, 1998. "Continuity in Evolution: On the Nature of Transitions," Working Papers ir98039, International Institute for Applied Systems Analysis.
    4. Frank J. Poelwijk & Daniel J. Kiviet & Daniel M. Weinreich & Sander J. Tans, 2007. "Empirical fitness landscapes reveal accessible evolutionary paths," Nature, Nature, vol. 445(7126), pages 383-386, January.
    5. Roger D Kouyos & Viktor von Wyl & Trevor Hinkley & Christos J Petropoulos & Mojgan Haddad & Jeannette M Whitcomb & Jürg Böni & Sabine Yerly & Cristina Cellerai & Thomas Klimkait & Huldrych F Günthard , 2011. "Assessing Predicted HIV-1 Replicative Capacity in a Clinical Setting," PLOS Pathogens, Public Library of Science, vol. 7(11), pages 1-5, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Nichol & Peter Jeavons & Alexander G Fletcher & Robert A Bonomo & Philip K Maini & Jerome L Paul & Robert A Gatenby & Alexander RA Anderson & Jacob G Scott, 2015. "Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnendu Chatterjee & Andreas Pavlogiannis & Ben Adlam & Martin A Nowak, 2014. "The Time Scale of Evolutionary Innovation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-7, September.
    2. James P. Crutchfield & Erik van Nimwegen, 1999. "The Evolutionary Unfolding of Complexity," Working Papers 99-02-015, Santa Fe Institute.
    3. Jan Cupal & Stephan Kopp & Peter F. Stadler, 1999. "RNA Space Shape Technology," Working Papers 99-03-022, Santa Fe Institute.
    4. Miguel A Fortuna & Luis Zaman & Charles Ofria & Andreas Wagner, 2017. "The genotype-phenotype map of an evolving digital organism," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    5. Tobias Sikosek & Erich Bornberg-Bauer & Hue Sun Chan, 2012. "Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-17, September.
    6. Evandro Ferrada, 2014. "The Amino Acid Alphabet and the Architecture of the Protein Sequence-Structure Map. I. Binary Alphabets," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-20, December.
    7. Bårbel M. R. Stadler & Peter F. Stadler & Peter R. Wills, 2001. "Evolution in Systems of Ligation-Based Replicators," Working Papers 01-09-052, Santa Fe Institute.
    8. Rendel, Mark D., 2011. "Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes," Theoretical Population Biology, Elsevier, vol. 79(1), pages 12-18.
    9. Campos, Paulo R.A & Adami, Christoph & Wilke, Claus O, 2002. "Optimal adaptive performance and delocalization in NK fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 304(3), pages 495-506.
    10. Christian M. Reidys & Peter F. Stadler, 1998. "Neutrality in Fitness Landscapes," Working Papers 98-10-089, Santa Fe Institute.
    11. Gustavo V. Barroso & Nataša Puzović & Julien Y Dutheil, 2019. "Inference of recombination maps from a single pair of genomes and its application to ancient samples," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-21, November.
    12. Manuel Beltrán Del Río & Christopher R. Stephens & David A. Rosenblueth, 2015. "Fitness Landscape Epistasis And Recombination," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-38, November.
    13. Manhart, Michael & Haldane, Allan & Morozov, Alexandre V., 2012. "A universal scaling law determines time reversibility and steady state of substitutions under selection," Theoretical Population Biology, Elsevier, vol. 82(1), pages 66-76.
    14. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
    16. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    17. Beerenwinkel Niko & Knupfer Patrick & Tresch Achim, 2011. "Learning Monotonic Genotype-Phenotype Maps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
    18. Masel, Joanna & Lyttle, David N., 2011. "The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species," Theoretical Population Biology, Elsevier, vol. 80(4), pages 317-322.
    19. BŠrbel M. R. Stadler & Peter F. Stadler & Max Shpak & GŸnter P. Wagner, 2001. "Recombination Spaces, Metrics, and Pretopologies," Working Papers 01-02-011, Santa Fe Institute.
    20. Rouzine, Igor M. & Coffin, John M., 2010. "Multi-site adaptation in the presence of infrequent recombination," Theoretical Population Biology, Elsevier, vol. 77(3), pages 189-204.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.