A universal scaling law determines time reversibility and steady state of substitutions under selection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tpb.2012.03.007
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
- Shimon Bershtein & Michal Segal & Roy Bekerman & Nobuhiko Tokuriki & Dan S. Tawfik, 2006. "Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein," Nature, Nature, vol. 444(7121), pages 929-932, December.
- Frank J. Poelwijk & Daniel J. Kiviet & Daniel M. Weinreich & Sander J. Tans, 2007. "Empirical fitness landscapes reveal accessible evolutionary paths," Nature, Nature, vol. 445(7126), pages 383-386, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nikhil Sharma & Suman G. Das & Joachim Krug & Arne Traulsen, 2025. "Graph-structured populations elucidate the role of deleterious mutations in long-term evolution," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- McCandlish, David M. & Epstein, Charles L. & Plotkin, Joshua B., 2015. "Formal properties of the probability of fixation: Identities, inequalities and approximations," Theoretical Population Biology, Elsevier, vol. 99(C), pages 98-113.
- Patrick C F Buchholz & Catharina Zeil & Jürgen Pleiss, 2018. "The scale-free nature of protein sequence space," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marina A Pak & Karina A Markhieva & Mariia S Novikova & Dmitry S Petrov & Ilya S Vorobyev & Ekaterina S Maksimova & Fyodor A Kondrashov & Dmitry N Ivankov, 2023. "Using AlphaFold to predict the impact of single mutations on protein stability and function," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-9, March.
- Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
- Alicia Sanchez-Gorostiaga & Djordje Bajić & Melisa L Osborne & Juan F Poyatos & Alvaro Sanchez, 2019. "High-order interactions distort the functional landscape of microbial consortia," PLOS Biology, Public Library of Science, vol. 17(12), pages 1-34, December.
- Krishnendu Chatterjee & Andreas Pavlogiannis & Ben Adlam & Martin A Nowak, 2014. "The Time Scale of Evolutionary Innovation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-7, September.
- González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
- González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
- Steven Schulz & Sébastien Boyer & Matteo Smerlak & Simona Cocco & Rémi Monasson & Clément Nizak & Olivier Rivoire, 2021. "Parameters and determinants of responses to selection in antibody libraries," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-24, March.
- repec:plo:pcbi00:1002134 is not listed on IDEAS
- Jingzhi Lou & Weiwen Liang & Lirong Cao & Inchi Hu & Shi Zhao & Zigui Chen & Renee Wan Yi Chan & Peter Pak Hang Cheung & Hong Zheng & Caiqi Liu & Qi Li & Marc Ka Chun Chong & Yexian Zhang & Eng-kiong , 2024. "Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Smadi, Charline, 2015. "An eco-evolutionary approach of adaptation and recombination in a large population of varying size," Stochastic Processes and their Applications, Elsevier, vol. 125(5), pages 2054-2095.
- Pokalyuk, Cornelia & Wakolbinger, Anton, 2020. "Maintenance of diversity in a hierarchical host–parasite model with balancing selection and reinfection," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 1119-1158.
- Esser, Manuel & Kraut, Anna, 2025. "Effective growth rates in a periodically changing environment: From mutation to invasion," Stochastic Processes and their Applications, Elsevier, vol. 184(C).
- Gilpin, William & Feldman, Marcus W., 2019. "Cryptic selection forces and dynamic heritability in generalized phenotypic evolution," Theoretical Population Biology, Elsevier, vol. 125(C), pages 20-29.
- Steve O'Hagan & Joshua Knowles & Douglas B Kell, 2012. "Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-14, November.
- Champagnat, Nicolas & Hass, Vincent, 2023. "Existence, uniqueness and ergodicity for the centered Fleming–Viot process," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
- Bansaye, Vincent & Erny, Xavier & Méléard, Sylvie, 2024. "Sharp approximation and hitting times for stochastic invasion processes," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
- Zachary R Sailer & Sarah H Shafik & Robert L Summers & Alex Joule & Alice Patterson-Robert & Rowena E Martin & Michael J Harms, 2020. "Inferring a complete genotype-phenotype map from a small number of measured phenotypes," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-27, September.
- Junichiro Iwasawa & Tomoya Maeda & Atsushi Shibai & Hazuki Kotani & Masako Kawada & Chikara Furusawa, 2022. "Analysis of the evolution of resistance to multiple antibiotics enables prediction of the Escherichia coli phenotype-based fitness landscape," PLOS Biology, Public Library of Science, vol. 20(12), pages 1-19, December.
- Fritsch, Coralie & Campillo, Fabien & Ovaskainen, Otso, 2017. "A numerical approach to determine mutant invasion fitness and evolutionary singular strategies," Theoretical Population Biology, Elsevier, vol. 115(C), pages 89-99.
- Jordan Yang & Nandita Naik & Jagdish Suresh Patel & Christopher S Wylie & Wenze Gu & Jessie Huang & F Marty Ytreberg & Mandar T Naik & Daniel M Weinreich & Brenda M Rubenstein, 2020. "Predicting the viability of beta-lactamase: How folding and binding free energies correlate with beta-lactamase fitness," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-26, May.
- Beerenwinkel Niko & Knupfer Patrick & Tresch Achim, 2011. "Learning Monotonic Genotype-Phenotype Maps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:82:y:2012:i:1:p:66-76. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.