IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011876.html
   My bibliography  Save this article

Enhancing predictive performance for spectroscopic studies in wildlife science through a multi-model approach: A case study for species classification of live amphibians

Author

Listed:
  • Li-Dunn Chen
  • Michael A Caprio
  • Devin M Chen
  • Andrew J Kouba
  • Carrie K Kouba

Abstract

Near infrared spectroscopy coupled with predictive modeling is a growing field of study for addressing questions in wildlife science aimed at improving management strategies and conservation outcomes for managed and threatened fauna. To date, the majority of spectroscopic studies in wildlife and fisheries applied chemometrics and predictive modeling with a single-algorithm approach. By contrast, multi-model approaches are used routinely for analyzing spectroscopic datasets across many major industries (e.g., medicine, agriculture) to maximize predictive outcomes for real-world applications. In this study, we conducted a benchmark modeling exercise to compare the performance of several machine learning algorithms in a multi-class problem utilizing a multivariate spectroscopic dataset obtained from live animals. Spectra obtained from live individuals representing eleven amphibian species were classified according to taxonomic designation. Seven modeling techniques were applied to generate prediction models, which varied significantly (p

Suggested Citation

  • Li-Dunn Chen & Michael A Caprio & Devin M Chen & Andrew J Kouba & Carrie K Kouba, 2024. "Enhancing predictive performance for spectroscopic studies in wildlife science through a multi-model approach: A case study for species classification of live amphibians," PLOS Computational Biology, Public Library of Science, vol. 20(2), pages 1-24, February.
  • Handle: RePEc:plo:pcbi00:1011876
    DOI: 10.1371/journal.pcbi.1011876
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011876
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011876&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miriam Villamuelas & Emmanuel Serrano & Johan Espunyes & Néstor Fernández & Jorge R López-Olvera & Mathieu Garel & João Santos & María Ángeles Parra-Aguado & Maurizio Ramanzin & Xavier Fernández-Aguil, 2017. "Predicting herbivore faecal nitrogen using a multispecies near-infrared reflectance spectroscopy calibration," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-15, April.
    2. Andrius Vabalas & Emma Gowen & Ellen Poliakoff & Alexander J Casson, 2019. "Machine learning algorithm validation with a limited sample size," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    2. Leandro C. Hermida & E. Michael Gertz & Eytan Ruppin, 2022. "Predicting cancer prognosis and drug response from the tumor microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Steffen Steinert & Verena Ruf & David Dzsotjan & Nicolas Großmann & Albrecht Schmidt & Jochen Kuhn & Stefan Küchemann, 2024. "A refined approach for evaluating small datasets via binary classification using machine learning," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-21, May.
    5. Jacob Beck, 2023. "Quality aspects of annotated data," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(3), pages 331-353, December.
    6. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    7. Ciaran Michael Kelly & Russell Lewis McLaughlin, 2024. "Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-13, August.
    8. Reza Rezaee & Jamiu Ekundayo, 2022. "Permeability Prediction Using Machine Learning Methods for the CO 2 Injectivity of the Precipice Sandstone in Surat Basin, Australia," Energies, MDPI, vol. 15(6), pages 1-15, March.
    9. Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
    10. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    11. Carlo Dindorf & Eva Bartaguiz & Freya Gassmann & Michael Fröhlich, 2022. "Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    12. Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
    13. Bhattacharjee, Biplab & Kumar, Rajiv & Senthilkumar, Arunachalam, 2022. "Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks," International Review of Financial Analysis, Elsevier, vol. 84(C).
    14. Mahdi Goldani & Soraya Asadi Tirvan, 2024. "Sensitivity Assessing to Data Volume for forecasting: introducing similarity methods as a suitable one in Feature selection methods," Papers 2406.04390, arXiv.org.
    15. Xiaofeng Xu & Zhaoyuan Chen & Shixiang Chen, 2023. "Enhancing economic competitiveness analysis through machine learning: Exploring complex urban features," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-27, November.
    16. Qianru Qi & Rongjun Cheng & Hongxia Ge, 2022. "Short-Term Travel Demand Prediction of Online Ride-Hailing Based on Multi-Factor GRU Model," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    17. Shravankumar Shivappa Masalvad & Chidanand Patil & Akkaram Pravalika & Basavaraj Katageri & Purandara Bekal & Prashant Patil & Nagraj Hegde & Uttam Kumar Sahoo & Praveen Kumar Sakare, 2024. "Application of geospatial technology for the land use/land cover change assessment and future change predictions using CA Markov chain model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24817-24842, October.
    18. Qiaoyang Li & Guiming Chen, 2021. "Recognition of industrial machine parts based on transfer learning with convolutional neural network," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-21, January.
    19. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Francisco Gatica-Neira & Mario Ramos-Maldonado, 2022. "Limits to the Productivity in Biobased Territorial SMEs," SAGE Open, , vol. 12(2), pages 21582440221, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.