Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0308962
Download full text from publisher
References listed on IDEAS
- Andrius Vabalas & Emma Gowen & Ellen Poliakoff & Alexander J Casson, 2019. "Machine learning algorithm validation with a limited sample size," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-20, November.
- Konietschke, Frank & Placzek, Marius & Schaarschmidt, Frank & Hothorn, Ludwig A., 2015. "nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i09).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li-Dunn Chen & Michael A Caprio & Devin M Chen & Andrew J Kouba & Carrie K Kouba, 2024. "Enhancing predictive performance for spectroscopic studies in wildlife science through a multi-model approach: A case study for species classification of live amphibians," PLOS Computational Biology, Public Library of Science, vol. 20(2), pages 1-24, February.
- Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
- Juliette Richetin & Giulio Costantini & Marco Perugini & Felix Schönbrodt, 2015. "Should We Stop Looking for a Better Scoring Algorithm for Handling Implicit Association Test Data? Test of the Role of Errors, Extreme Latencies Treatment, Scoring Formula, and Practice Trials on Reli," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
- Leandro C. Hermida & E. Michael Gertz & Eytan Ruppin, 2022. "Predicting cancer prognosis and drug response from the tumor microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Steffen Steinert & Verena Ruf & David Dzsotjan & Nicolas Großmann & Albrecht Schmidt & Jochen Kuhn & Stefan Küchemann, 2024. "A refined approach for evaluating small datasets via binary classification using machine learning," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-21, May.
- Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
- Jacob Beck, 2023. "Quality aspects of annotated data," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(3), pages 331-353, December.
- Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
- Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
- Reza Rezaee & Jamiu Ekundayo, 2022. "Permeability Prediction Using Machine Learning Methods for the CO 2 Injectivity of the Precipice Sandstone in Surat Basin, Australia," Energies, MDPI, vol. 15(6), pages 1-15, March.
- Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
- Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
- Claudia Kedor & Helma Freitag & Lil Meyer-Arndt & Kirsten Wittke & Leif G. Hanitsch & Thomas Zoller & Fridolin Steinbeis & Milan Haffke & Gordon Rudolf & Bettina Heidecker & Thomas Bobbert & Joachim S, 2022. "A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Carlo Dindorf & Eva Bartaguiz & Freya Gassmann & Michael Fröhlich, 2022. "Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
- Zhou, Huanyu & Qiu, Yingning & Feng, Yanhui & Liu, Jing, 2022. "Power prediction of wind turbine in the wake using hybrid physical process and machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 568-586.
- Bhattacharjee, Biplab & Kumar, Rajiv & Senthilkumar, Arunachalam, 2022. "Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Halinski, Rosana & Garibaldi, Lucas Alejandro & dos Santos, Charles Fernando & Acosta, André Luis & Guidi, Daniel Dornelles & Blochtein, Betina, 2020. "Forest fragments and natural vegetation patches within crop fields contribute to higher oilseed rape yields in Brazil," Agricultural Systems, Elsevier, vol. 180(C).
- Mahdi Goldani & Soraya Asadi Tirvan, 2024. "Sensitivity Assessing to Data Volume for forecasting: introducing similarity methods as a suitable one in Feature selection methods," Papers 2406.04390, arXiv.org.
- Xiaofeng Xu & Zhaoyuan Chen & Shixiang Chen, 2023. "Enhancing economic competitiveness analysis through machine learning: Exploring complex urban features," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-27, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0308962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.