IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011021.html
   My bibliography  Save this article

A new method for the joint estimation of instantaneous reproductive number and serial interval during epidemics

Author

Listed:
  • Chenxi Dai
  • Dongsheng Zhou
  • Bo Gao
  • Kaifa Wang

Abstract

Although some methods for estimating the instantaneous reproductive number during epidemics have been developed, the existing frameworks usually require information on the distribution of the serial interval and/or additional contact tracing data. However, in the case of outbreaks of emerging infectious diseases with an unknown natural history or undetermined characteristics, the serial interval and/or contact tracing data are often not available, resulting in inaccurate estimates for this quantity. In the present study, a new framework was specifically designed for joint estimates of the instantaneous reproductive number and serial interval. Concretely, a likelihood function for the two quantities was first introduced. Then, the instantaneous reproductive number and the serial interval were modeled parametrically as a function of time using the interpolation method and a known traditional distribution, respectively. Using the Bayesian information criterion and the Markov Chain Monte Carlo method, we ultimately obtained their estimates and distribution. The simulation study revealed that our estimates of the two quantities were consistent with the ground truth. Seven data sets of historical epidemics were considered and further verified the robust performance of our method. Therefore, to some extent, even if we know only the daily incidence, our method can accurately estimate the instantaneous reproductive number and serial interval to provide crucial information for policymakers to design appropriate prevention and control interventions during epidemics.Author summary: Contagious disease epidemics, such as coronavirus disease 2019 (COVID-19), intermittently threaten global public health. In this situation, policymakers usually hope to timely monitor the severity of the disease transmission and thus evaluate the effectiveness of the prevention and control interventions. Instantaneous reproductive number and serial interval are the two most commonly used monitoring indices. The former refers to the expected number of secondary cases infected by a primary case, and the latter refers to the time interval between a primary case presenting with symptoms and its secondary cases developing symptoms. However, the existing frameworks can hardly estimate these two indicators simultaneously in the absence of additional contact tracing data or other prior information. In the presented study, we developed a likelihood method incorporating interpolation, Bayesian information criterion and Markov Chain Monte Carlo method to jointly estimate the two quantities, which only depends on the daily incidence. The simulation study and several data sets of historical epidemics verified the robust performance of our method. Therefore, even in the case of outbreaks of emerging infectious diseases with an unknown natural history or undetermined characteristics, our method can, to a certain extent, provide crucial information for policymakers to design appropriate measures during epidemics.

Suggested Citation

  • Chenxi Dai & Dongsheng Zhou & Bo Gao & Kaifa Wang, 2023. "A new method for the joint estimation of instantaneous reproductive number and serial interval during epidemics," PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-25, March.
  • Handle: RePEc:plo:pcbi00:1011021
    DOI: 10.1371/journal.pcbi.1011021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011021
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathy Leung & Joseph T. Wu & Gabriel M. Leung, 2021. "Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    2. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    3. Tamer Edirne & Dilek Avci & Burçak Dagkara & Muslum Aslan, 2011. "Knowledge and anticipated attitudes of the community about bird flu outbreak in Turkey, 2007–2008: a survey-based descriptive study," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 163-168, April.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    6. Wang, Peipei & Zheng, Xinqi & Chen, Yuanming & Xu, Yazhou, 2024. "A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    9. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    10. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    11. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    12. Andrew J Black & Joshua V Ross, 2013. "Estimating a Markovian Epidemic Model Using Household Serial Interval Data from the Early Phase of an Epidemic," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    13. repec:plo:pone00:0013377 is not listed on IDEAS
    14. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    15. Li, Qian & Xiao, Yanni, 2023. "Analysis of a hybrid SIR model combining the fixed-moments pulse interventions with susceptibles-triggered threshold policy," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    16. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    17. Sumedha Gupta & Kosali I. Simon & Coady Wing, 2020. "Mandated and Voluntary Social Distancing During The COVID-19 Epidemic: A Review," NBER Working Papers 28139, National Bureau of Economic Research, Inc.
    18. Edoardo Di Porto & Paolo Naticchioni & Vincenzo Scrutinio, 2020. "Partial Lockdown and the Spread of Covid-19: Lessons from the Italian Case," CSEF Working Papers 569, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    19. Yoshiyuki Sugishita & Junko Kurita & Tamie Sugawara & Yasushi Ohkusa, 2020. "Effects of voluntary event cancellation and school closure as countermeasures against COVID-19 outbreak in Japan," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-10, December.
    20. repec:plo:pcbi00:1003587 is not listed on IDEAS
    21. repec:plo:pone00:0097297 is not listed on IDEAS
    22. repec:plo:pone00:0001519 is not listed on IDEAS
    23. Khan, Mohsin & Abdalgader, Tarteel & Pedersen, Michael & Zhang, Lai, 2025. "Interactive effects of climate change and human mobility on dengue transmission," Ecological Modelling, Elsevier, vol. 499(C).
    24. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.