IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s096007792401261x.html
   My bibliography  Save this article

A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling

Author

Listed:
  • Wang, Peipei
  • Zheng, Xinqi
  • Chen, Yuanming
  • Xu, Yazhou

Abstract

Since 2019, major infectious disease outbreaks have placed tremendous pressure on global public health systems, triggering extensive research on the predictive modeling of infectious diseases. Cellular Automaton (CA) is primarily used in the spatial prediction of infectious diseases to establish a model to for simulating the interaction between different regions and the infection risk to simulate the transmission process of the disease and predict its development trend. However, CA models are governed by initial fixed rules and local interactions, and often fail to capture the complex dynamics of epidemic transmission, which are influenced by factors such as public behavior and government intervention. In view of these limitations, we propose a factorial simulation model for the spatial spread of epidemics, the CA-ABM, which divides agents into three categories–public, government, and hospital agents–to comprehensively express the macro factors that affect the development of epidemics. Agent-Based Modeling (ABM) influences the transition rules of the CA through agent choices, constraints and supporting behaviors. Focusing on the COVID-19 pandemic in mainland China from February 6 to March 20, 2020, we simulate its spread. The results showed an average improvement of 8.4 % in prediction accuracy, with few errors, RMSE under 200, and R2 values over 0.9 in most provinces, demonstrating strong macro-scale stability. This approach helps regions to understand influencing factors and enables targeted infection risk assessment and prevention. In addition, scenario analysis based on CA-ABM model changes epidemic decision-making from “prediction-response” to “scenario-response” and provides theoretical reference for future epidemic management.

Suggested Citation

  • Wang, Peipei & Zheng, Xinqi & Chen, Yuanming & Xu, Yazhou, 2024. "A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401261x
    DOI: 10.1016/j.chaos.2024.115709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401261X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Msemburi & Ariel Karlinsky & Victoria Knutson & Serge Aleshin-Guendel & Somnath Chatterji & Jon Wakefield, 2023. "The WHO estimates of excess mortality associated with the COVID-19 pandemic," Nature, Nature, vol. 613(7942), pages 130-137, January.
    2. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Emily Howerton & Lucie Contamin & Luke C. Mullany & Michelle Qin & Nicholas G. Reich & Samantha Bents & Rebecca K. Borchering & Sung-mok Jung & Sara L. Loo & Claire P. Smith & John Levander & Jessica , 2023. "Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Kathy Leung & Joseph T. Wu & Gabriel M. Leung, 2021. "Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yong Ge & Wen-Bin Zhang & Xilin Wu & Corrine W. Ruktanonchai & Haiyan Liu & Jianghao Wang & Yongze Song & Mengxiao Liu & Wei Yan & Juan Yang & Eimear Cleary & Sarchil H. Qader & Fatumah Atuhaire & Nic, 2022. "Untangling the changing impact of non-pharmaceutical interventions and vaccination on European COVID-19 trajectories," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Mohammad, Mutaz & Trounev, Alexander, 2020. "On the dynamical modeling of COVID-19 involving Atangana–Baleanu fractional derivative and based on Daubechies framelet simulations," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    8. Burkhead, Emily & Hawkins, Jane, 2015. "A cellular automata model of Ebola virus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 424-435.
    9. Shibing You & Hengli Wang & Miao Zhang & Haitao Song & Xiaoting Xu & Yongzeng Lai, 2020. "Assessment of monthly economic losses in Wuhan under the lockdown against COVID-19," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandr Abramov & Uliana Gorik & Andrei Velichko & Vladimir Nelyub & Aleksandr Samoshkin & Andrei Gantimurov & Aleksei Borodulin & Vadim S. Tynchenko & Ivan Malashin, 2025. "Barabási–Albert-Based Network Growth Model to Sustainable Urban Planning," Sustainability, MDPI, vol. 17(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Chengzhuo Tong & Wenzhong Shi & Anshu Zhang & Zhicheng Shi, 2023. "Predicting onset risk of COVID-19 symptom to support healthy travel route planning in the new normal of long-term coexistence with SARS-CoV-2," Environment and Planning B, , vol. 50(5), pages 1212-1227, June.
    3. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.
    4. Qiang Wang & Min Su & Min Zhang & Rongrong Li, 2021. "Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare," IJERPH, MDPI, vol. 18(11), pages 1-50, June.
    5. Bart Roelofs & Dimitris Ballas & Hinke Haisma & Arjen Edzes, 2022. "Spatial mobility patterns and COVID‐19 incidence: A regional analysis of the second wave in the Netherlands," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S1), pages 21-40, November.
    6. Qing Liu & Hosung Son & Woon-Seek Lee, 2024. "The game of lies by stock investors in social media: a study based on city lockdowns in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-37, December.
    7. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    8. Andrea Bellucci & Gianluca Gucciardi, 2023. "A Turning Point for Banking: Unravelling the Changing Landscape of Banking Activity in Europe since the COVID-19 pandemic," Mo.Fi.R. Working Papers 183, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    9. Mahdi Salehi & Grzegorz Zimon & Ali Reza Ghaderi & Zinab Ahmed Hasan, 2022. "The Relationship between Prevention and Panic from COVID-19, Ethical Principles, Life Expectancy, Anxiety, Depression and Stress," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    10. Boto-García, David, 2023. "Investigating the two-way relationship between mobility flows and COVID-19 cases," Economic Modelling, Elsevier, vol. 118(C).
    11. Lei Che & Jiangang Xu & Hong Chen & Dongqi Sun & Bao Wang & Yunuo Zheng & Xuedi Yang & Zhongren Peng, 2022. "Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption," Land, MDPI, vol. 11(8), pages 1-20, August.
    12. Parrendah Adwoa Kpeli & Günther G. Schulze & Nikita Zakharov, 2024. "Elections and (mis)reporting of COVID-19 mortality," Discussion Paper Series 48 JEL Classification: D7, Department of International Economic Policy, University of Freiburg, revised Apr 2024.
    13. Florian Bonnet & Pavel Grigoriev & Markus Sauerberg & Ina Alliger & Michael Mühlichen & Carlo-Giovanni Camarda, 2024. "Spatial disparities in the mortality burden of the covid-19 pandemic across 569 European regions (2020-2021)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. José Henrique Costa Monteiro da Silva & Helena Cruz Castanheira, 2024. "Using household death questions from surveys to assess adult mortality in periods of health crisis: An application for Peru, 2018–2022," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 51(8), pages 215-228.
    15. Brunckhorst,Ben James & Kim,Yeon Soo & Cojocaru,Alexandru, 2023. "Tracing Pandemic Impacts in the Absence of Regular Survey Data: What Have We Learned from the World Bank’s High-Frequency Phone Surveys?," Policy Research Working Paper Series 10585, The World Bank.
    16. Bo Huang & Jionghua Wang & Jixuan Cai & Shiqi Yao & Paul Kay Sheung Chan & Tony Hong-wing Tam & Ying-Yi Hong & Corrine W. Ruktanonchai & Alessandra Carioli & Jessica R. Floyd & Nick W. Ruktanonchai & , 2021. "Integrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese cities," Nature Human Behaviour, Nature, vol. 5(6), pages 695-705, June.
    17. Fang, Guanfu & Tang, Tianyu & Zhao, Fang & Zhu, Ying, 2023. "The social scar of the pandemic: Impacts of COVID-19 exposure on interpersonal trust," Journal of Asian Economics, Elsevier, vol. 86(C).
    18. John R. Birge & Ozan Candogan & Yiding Feng, 2022. "Controlling Epidemic Spread: Reducing Economic Losses with Targeted Closures," Management Science, INFORMS, vol. 68(5), pages 3175-3195, May.
    19. Gilgur, Alexander & Ramirez-Marquez, Jose Emmanuel, 2022. "Modeling mobility, risk, and pandemic severity during the first year of COVID," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    20. repec:osf:osfxxx:k3eq6_v1 is not listed on IDEAS
    21. Javier Del-Águila-Mejía & David García-García & Ayelén Rojas-Benedicto & Nicolás Rosillo & María Guerrero-Vadillo & Marina Peñuelas & Rebeca Ramis & Diana Gómez-Barroso & Juan de Mata Donado-Campos, 2023. "Epidemic Diffusion Network of Spain: A Mobility Model to Characterize the Transmission Routes of Disease," IJERPH, MDPI, vol. 20(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s096007792401261x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.