IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002768.html
   My bibliography  Save this article

A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data

Author

Listed:
  • Marco J Morelli
  • Gaël Thébaud
  • Joël Chadœuf
  • Donald P King
  • Daniel T Haydon
  • Samuel Soubeyrand

Abstract

The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes during an epidemic is often an underdetermined problem: data about the location and timings of infections can be incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably generated. However, significant statistical challenges remain to be overcome in the full integration of these different data types if transmission trees are to be reliably estimated. We present here a framework leading to a bayesian inference scheme that combines genetic and epidemiological data, able to reconstruct most likely transmission patterns and infection dates. After testing our approach with simulated data, we apply the method to two UK epidemics of Foot-and-Mouth Disease Virus (FMDV): the 2007 outbreak, and a subset of the large 2001 epidemic. In the first case, we are able to confirm the role of a specific premise as the link between the two phases of the epidemics, while transmissions more densely clustered in space and time remain harder to resolve. When we consider data collected from the 2001 epidemic during a time of national emergency, our inference scheme robustly infers transmission chains, and uncovers the presence of undetected premises, thus providing a useful tool for epidemiological studies in real time. The generation of genetic data is becoming routine in epidemiological investigations, but the development of analytical tools maximizing the value of these data remains a priority. Our method, while applied here in the context of FMDV, is general and with slight modification can be used in any situation where both spatiotemporal and genetic data are available. Author Summary: In order to most effectively control the spread of an infectious disease, we need to better understand how pathogens spread within a host population, yet this is something we know remarkably little about. Cases close together in their locations and timing are often thought to be linked, but timings and locations alone are usually consistent with many different scenarios of who-infected-who. The genome of many pathogens evolves so quickly relative to the rate that they are transmitted, that even over single short epidemics we can identify which hosts contain pathogens that are most closely related to each other. This information is valuable because when combined with the spatial and timing data it should help us infer more reliably who-transmitted-to-who over the course of a disease outbreak. However, doing this so that these three different lines of evidence are appropriately weighted and interpreted remains a major statistical challenge. In our paper we present a new statistical method for combining these different types of data and estimating trees that show how infection was most likely transmitted between individuals in a host population. Because sequencing genetic material has become so affordable, we think methods like ours will become very important for future epidemiology.

Suggested Citation

  • Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
  • Handle: RePEc:plo:pcbi00:1002768
    DOI: 10.1371/journal.pcbi.1002768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002768
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. M. J. Keeling & M. E. J. Woolhouse & R. M. May & G. Davies & B. T. Grenfell, 2003. "Modelling vaccination strategies against foot-and-mouth disease," Nature, Nature, vol. 421(6919), pages 136-142, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David R J Pleydell & Samuel Soubeyrand & Sylvie Dallot & Gérard Labonne & Joël Chadœuf & Emmanuel Jacquot & Gaël Thébaud, 2018. "Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-24, April.
    2. Montazeri Hesam & Mozaffarilegha Mozhgan & Little Susan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    3. Max S Y Lau & Bryan T Grenfell & Colin J Worby & Gavin J Gibson, 2019. "Model diagnostics and refinement for phylodynamic models," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    4. Max S Y Lau & Gavin J Gibson & Hola Adrakey & Amanda McClelland & Steven Riley & Jon Zelner & George Streftaris & Sebastian Funk & Jessica Metcalf & Benjamin D Dalziel & Bryan T Grenfell, 2017. "A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-18, October.
    5. Matthew Hall & Mark Woolhouse & Andrew Rambaut, 2015. "Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montazeri Hesam & Mozaffarilegha Mozhgan & Little Susan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    2. Parham, Paul E. & Singh, Brajendra K. & Ferguson, Neil M., 2008. "Analytic approximation of spatial epidemic models of foot and mouth disease," Theoretical Population Biology, Elsevier, vol. 73(3), pages 349-368.
    3. Hennessy, David A. & Rault, Arnaud, 2023. "On systematically insufficient biosecurity actions and policies to manage infectious animal disease," Ecological Economics, Elsevier, vol. 206(C).
    4. Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
    5. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    6. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    7. Diana Giurghita & Dirk Husmeier, 2018. "Statistical modelling of cell movement," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 265-280, August.
    8. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    9. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    10. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    11. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    12. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    13. Kouritzin, Michael A., 2017. "Residual and stratified branching particle filters," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 145-165.
    14. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    15. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    16. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    17. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    18. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    19. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    20. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.