IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000468.html
   My bibliography  Save this article

Nash Equilibria in Multi-Agent Motor Interactions

Author

Listed:
  • Daniel A Braun
  • Pedro A Ortega
  • Daniel M Wolpert

Abstract

Social interactions in classic cognitive games like the ultimatum game or the prisoner's dilemma typically lead to Nash equilibria when multiple competitive decision makers with perfect knowledge select optimal strategies. However, in evolutionary game theory it has been shown that Nash equilibria can also arise as attractors in dynamical systems that can describe, for example, the population dynamics of microorganisms. Similar to such evolutionary dynamics, we find that Nash equilibria arise naturally in motor interactions in which players vie for control and try to minimize effort. When confronted with sensorimotor interaction tasks that correspond to the classical prisoner's dilemma and the rope-pulling game, two-player motor interactions led predominantly to Nash solutions. In contrast, when a single player took both roles, playing the sensorimotor game bimanually, cooperative solutions were found. Our methodology opens up a new avenue for the study of human motor interactions within a game theoretic framework, suggesting that the coupling of motor systems can lead to game theoretic solutions.Author Summary: Human motor interactions range from adversarial activities like judo and arm wrestling to more cooperative activities like tandem riding and tango dancing. In this study, we design a new methodology to study human sensorimotor interactions quantitatively based on game theory. We develop two motor tasks based on the prisoner's dilemma and the rope-pulling game in which we introduce an intrinsic cost related to effort rather than the typical monetary outcome used in cognitive game theory. We find that continuous motor interactions converged to game theoretic outcomes similar to the interaction dynamics reported for other dynamical systems in biology ranging in scale from microorganisms to population dynamics.

Suggested Citation

  • Daniel A Braun & Pedro A Ortega & Daniel M Wolpert, 2009. "Nash Equilibria in Multi-Agent Motor Interactions," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-8, August.
  • Handle: RePEc:plo:pcbi00:1000468
    DOI: 10.1371/journal.pcbi.1000468
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000468
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000468&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. James H. Fowler & Tim Johnson & Oleg Smirnov, 2005. "Egalitarian motive and altruistic punishment," Nature, Nature, vol. 433(7021), pages 1-1, January.
    3. Redouan Bshary & Alexandra S. Grutter & Astrid S. T. Willener & Olof Leimar, 2008. "Pairs of cooperating cleaner fish provide better service quality than singletons," Nature, Nature, vol. 455(7215), pages 964-966, October.
    4. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinil T Chackochan & Vittorio Sanguineti, 2019. "Incomplete information about the partner affects the development of collaborative strategies in joint action," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-23, December.
    2. Jiawei Li & Graham Kendall, 2015. "On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-9, August.
    3. Edward J A Turnham & Daniel A Braun & Daniel M Wolpert, 2011. "Inferring Visuomotor Priors for Sensorimotor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    4. Arne J Nagengast & Daniel A Braun & Daniel M Wolpert, 2010. "Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    5. Julian J Tramper & Bart van den Broek & Wim Wiegerinck & Hilbert J Kappen & Stan Gielen, 2012. "Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Ekmekci, Mehmet & Gossner, Olivier & Wilson, Andrea, 2012. "Impermanent types and permanent reputations," Journal of Economic Theory, Elsevier, vol. 147(1), pages 162-178.
    3. Laurent Lamy, 2013. "“Upping the ante”: how to design efficient auctions with entry?," RAND Journal of Economics, RAND Corporation, vol. 44(2), pages 194-214, June.
    4. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    5. Mathieu Faure & Gregory Roth, 2010. "Stochastic Approximations of Set-Valued Dynamical Systems: Convergence with Positive Probability to an Attractor," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 624-640, August.
    6. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    7. ,, 2011. "Manipulative auction design," Theoretical Economics, Econometric Society, vol. 6(2), May.
    8. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    9. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    10. Saori Iwanaga & Akira Namatame, 2015. "Hub Agents Determine Collective Behavior," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 165-181.
    11. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    12. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    13. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    14. B Kelsey Jack, 2009. "Auctioning Conservation Contracts in Indonesia - Participant Learning in Multiple Trial Rounds," CID Working Papers 35, Center for International Development at Harvard University.
    15. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.
    16. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    17. Siegfried Berninghaus & Werner Güth & M. Vittoria Levati & Jianying Qiu, 2006. "Satisficing in sales competition: experimental evidence," Papers on Strategic Interaction 2006-32, Max Planck Institute of Economics, Strategic Interaction Group.
    18. Carlos Alós-Ferrer & Georg Kirchsteiger & Markus Walzl, 2010. "On the Evolution of Market Institutions: The Platform Design Paradox," Economic Journal, Royal Economic Society, vol. 120(543), pages 215-243, March.
    19. Cho, In-Koo, 2005. "Introduction to learning and bounded rationality," Journal of Economic Theory, Elsevier, vol. 124(2), pages 127-128, October.
    20. Ball, Richard, 2017. "Violations of monotonicity in evolutionary models with sample-based beliefs," Economics Letters, Elsevier, vol. 152(C), pages 100-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.