IDEAS home Printed from https://ideas.repec.org/a/pid/journl/v55y2016i4p297-311.html
   My bibliography  Save this article

A Nexus Approach to Food, Water, and Energy: Sustainably Meeting Asia’s Future Food and Nutrition Requirements

Author

Listed:
  • Shenggen Fan

    (Director General, International Food Policy Research Institute (IFPRI), Washington, DC., USA)

Abstract

Agricultural and food production systems in Asia must undergo a significant transformation in order to meet the concurrent challenges of increasing food, water, and energy demands amid on-going climate change. This is particularly true in countries in South Asia, including Pakistan, where hunger and undernutrition persist and natural resource are increasingly strained. Sustainable intensification with a focus on nutrition is particularly crucial to provide adequate and nutritious food for all without further damages to the planet. However, a silo approach to meeting the demands of a growing, increasingly urbanised, and wealthier population is no longer acceptable. Instead, capitalising on the inter sectoral linkages between food, water, and energy can more effectively minimise trade-offs and maximise synergies across concurrent efforts to improve water, energy, food, and nutrition security sustainably.

Suggested Citation

  • Shenggen Fan, 2016. "A Nexus Approach to Food, Water, and Energy: Sustainably Meeting Asia’s Future Food and Nutrition Requirements," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 297-311.
  • Handle: RePEc:pid:journl:v:55:y:2016:i:4:p:297-311
    as

    Download full text from publisher

    File URL: http://www.pide.org.pk/pdf/PDR/2016/Volume4/297-311.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Food security in a world of natural resource scarcity: The role of agricultural technologies," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-847-7.
    2. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    3. repec:fpr:resrep:2012ghienglish is not listed on IDEAS
    4. Nelson, Gerald C. & Rosegrant, Mark W. & Palazzo, Amanda & Gray, Ian & Ingersoll, Christina & Robertson, Richard & Tokgoz, Simla & Zhu, Tingju & Sulser, Timothy B. & Ringler, Claudia & Msangi, Siwa & , 2010. "Food security, farming, and climate change to 2050: Scenarios, results, policy options," Research reports Gerald C. Nelson, et al., International Food Policy Research Institute (IFPRI).
    5. Pingali, Prabhu, 2007. "Westernization of Asian diets and the transformation of food systems: Implications for research and policy," Food Policy, Elsevier, vol. 32(3), pages 281-298, June.
    6. repec:fpr:export:70 is not listed on IDEAS
    7. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Synopsis of Food security in a world of natural resource scarcity: The role of agricultural technologies:," Issue briefs 81, International Food Policy Research Institute (IFPRI).
    8. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    9. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    10. von Grebmer, Klaus & Ringler, Claudia & Rosegrant, Mark W. & Olofinbiyi, Tolulope & Wiesmann, Doris & Fritschel, Heidi & Badiane, Ousmane & Torero, Maximo & Yohannes, Yisehac & Thompson, Jennifer & vo, 2012. "2012 Global hunger index: the challenge of hunger: Ensuring sustainable food security under land, water, and energy stresses," IFPRI books, International Food Policy Research Institute (IFPRI), number 2012 GHI English.
    11. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    12. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    13. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    2. Claudia Ringler & Menaal Ebrahim, 2015. "Policy Nook: "Climate Change and Water: What Can Economics Tell Us?"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-7.
    3. Athanasios Petsakos & Guy Hareau & Ulrich Kleinwechter & Keith Wiebe & Timothy B Sulser, 2018. "Comparing modeling approaches for assessing priorities in international agricultural research," Research Evaluation, Oxford University Press, vol. 27(2), pages 145-156.
    4. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    5. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    6. Guy M. Robinson & Doris A. Carson, 2015. "The globalisation of agriculture: introducing the Handbook," Chapters, in: Guy M. Robinson & Doris A. Carson (ed.), Handbook on the Globalisation of Agriculture, chapter 1, pages 1-28, Edward Elgar Publishing.
    7. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Cenacchi, Nicola & Creamer, Bernardo & Gueneau, Arthur & Hareau, Guy & Kleinwechter, Ulrich & Mottaleb, Khondoker & Nedumaran, Swamikannu &, 2015. "Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT:," IFPRI discussion papers 1469, International Food Policy Research Institute (IFPRI).
    8. Cenacchi, Nicola & Lim, Youngah & Sulser, Timothy B. & Islam, Shahnila & Mason-D’Croz, Daniel & Robertson, Richard D. & Kim, Chang-Gil & Wiebe, Keith D., 2016. "Climate change, agriculture, and adaptation in the Republic of Korea to 2050: An integrated assessment," IFPRI discussion papers 1586, International Food Policy Research Institute (IFPRI).
    9. Ouraich, Ismail & Dudu, Hasan & Tyner, Wallace E. & Cakmak, Erol, 2014. "Could Free Trade Alleviate Effects of Climate Change: A Worldwide Analysis with Emphasis on Morocco and Turkey," Conference papers 332460, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Stads, Gert-Jan & Wiebe, Keith D. & Nin-Pratt, Alejandro & Sulser, Timothy B. & Benfica, Rui & Reda, Fasil & Khetarpal, Ravi, 2022. "Research for the future: Investments for efficiency, sustainability, and equity," IFPRI book chapters, in: 2022 Global food policy report: Climate change and food systems, chapter 4, pages 38-47, International Food Policy Research Institute (IFPRI).
    11. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    12. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    13. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    14. Taheripour, Farzad & Hertel, Thomas W. & Liu, Ling, 2013. "Water reliability, irrigation adoption, and land use changes in the presence of biofuel production," Conference papers 332398, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Renato Vargas & Pamela Escobar & Maynor Cabrera & Javier Cabrera & Violeta Hernández & Vivian Guzmán & Martin Cicowiez, 2017. "Climate risk and food security in Guatemala," Working Papers MPIA 2017-01, PEP-MPIA.
    16. Tafadzwanashe Mabhaudhi & Vimbayi G. P. Chimonyo & Albert T. Modi, 2017. "Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    17. Bobojonov, Ihtiyor & Aw-Hassan, Aden, 2014. "Impacts of climate change on farm income security in Central Asia: An integrated modeling approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 188, pages 245-255.
    18. Baldos, Uris Lantz C. & Hertel, Thomas W., 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), October.
    19. Sheahan, Megan & Barrett, Christopher B., 2017. "Ten striking facts about agricultural input use in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 12-25.
    20. Chichaibelu, Bezawit Beyene & Bekchanov, Maksud & von Braun, Joachim & Torero, Maximo, 2021. "The global cost of reaching a world without hunger: Investment costs and policy action opportunities," Food Policy, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pid:journl:v:55:y:2016:i:4:p:297-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Khurram Iqbal (email available below). General contact details of provider: https://edirc.repec.org/data/pideipk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.