IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-023-02593-y.html
   My bibliography  Save this article

Can digital economy truly improve agricultural ecological transformation? New insights from China

Author

Listed:
  • Jian Hou

    (Henan Agricultural University)

  • Mengyao Zhang

    (Henan Agricultural University)

  • Ye Li

    (Henan Agricultural University)

Abstract

As the world’s biggest emitter of carbon, China’s agricultural carbon emissions account for 16 to 17%, with agriculture being the second largest contributor to carbon emissions. The development of the digital economy has brought profound changes to agricultural ecology. Therefore, we utilize China’s data experience to construct an agricultural ecological transformation system by setting up a Super-SBM model. Then, based on a dynamic panel threshold model, we explore the nonlinear impact mechanism of the digital economy on agricultural ecological transformation from a low-carbon innovation perspective. Our results reveal that the overall level of China’s agricultural ecological transformation is not high, but in the long-term posture, it represents a relatively steady upward trend, with a significant “wealth gap” between different regions. It is worth noting that there is a significant threshold effect of low-carbon innovation heterogeneity in the impact mechanism of digital economy on agricultural ecological transformation: under lower low-carbon innovation levels, the development of digital economy is unable to effectively promote agricultural ecological transformation. However, as the level of low-carbon technological innovation increases and exceeds the critical value, it stimulates the driving effect of digital economy to some extent, thereby promoting the improvement of agricultural ecological transformation, presenting a “U” shaped relationship. The paper has clarified the differential “new phenomena” in the process of promoting agricultural ecological transformation, providing new insights for achieving “carbon reduction and economic promotion” in developing countries.

Suggested Citation

  • Jian Hou & Mengyao Zhang & Ye Li, 2024. "Can digital economy truly improve agricultural ecological transformation? New insights from China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-023-02593-y
    DOI: 10.1057/s41599-023-02593-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02593-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02593-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    2. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    3. Zou, Jing & Deng, Xiaojun, 2022. "To inhibit or to promote: How does the digital economy affect urban migrant integration in China?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Amel Attour & Pierre Barbaroux, 2021. "The Role of Knowledge Processes in a Business Ecosystem’s Lifecycle," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(1), pages 238-255, March.
    5. Yan Wang & Lingling Zuo & Shujing Qian, 2022. "Green-Biased Technical Change and Its Influencing Factors of Agriculture Industry: Empirical Evidence at the Provincial Level in China," IJERPH, MDPI, vol. 19(23), pages 1-24, December.
    6. Boix-Fayos, Carolina & de Vente, Joris, 2023. "Challenges and potential pathways towards sustainable agriculture within the European Green Deal," Agricultural Systems, Elsevier, vol. 207(C).
    7. Chen, Xiaohui & Teng, Lei & Chen, Wen, 2022. "How does FinTech affect the development of the digital economy? Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    8. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Run Luo & Nianxing Zhou, 2022. "Dynamic Evolution, Spatial Differences, and Driving Factors of China’s Provincial Digital Economy," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    3. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    6. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    7. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    8. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    9. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    10. Kun Wang & Bing Chen & Yuhong Li, 2024. "Technological, process or managerial innovation? How does digital transformation affect green innovation in industrial enterprises?," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-32, February.
    11. Can Zhang & Jixia Li, 2024. "The Impact of Official Promotion Incentives on Urban Ecological Welfare Performance and Its Spatial Effect," Sustainability, MDPI, vol. 16(7), pages 1-29, April.
    12. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    13. Ningyi Liu & Yongyu Wang, 2022. "Urban Agglomeration Ecological Welfare Performance and Spatial Convergence Research in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-18, November.
    14. Chia-Nan Wang & Thi-Duong Nguyen & Min-Chun Yu, 2019. "Energy Use Efficiency Past-to-Future Evaluation: An International Comparison," Energies, MDPI, vol. 12(19), pages 1-15, October.
    15. Chan, Sok-Gee & Koh, Eric H.Y. & Zainir, Fauzi & Yong, Chen-Chen, 2015. "Market structure, institutional framework and bank efficiency in ASEAN 5," Journal of Economics and Business, Elsevier, vol. 82(C), pages 84-112.
    16. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    17. Liu, Fuh-Hwa Franklin & Wang, Peng-hsiang, 2008. "DEA Malmquist productivity measure: Taiwanese semiconductor companies," International Journal of Production Economics, Elsevier, vol. 112(1), pages 367-379, March.
    18. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    19. Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
    20. Gabriel Villa & Sebastián Lozano & Sandra Redondo, 2021. "Data Envelopment Analysis Approach to Energy-Saving Projects Selection in an Energy Service Company," Mathematics, MDPI, vol. 9(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-023-02593-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.