IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i3d10.1057_palgrave.jors.2602145.html
   My bibliography  Save this article

Optimal purchase of two-itemized drugs for a disease

Author

Listed:
  • C-H Lan

    (Nanhua University)

  • C-C Chen

    (Nanhua University)

Abstract

This paper submits a mathematical model called the two-itemized drugs purchasing decision (TDPD) model to conduct the optimal purchase of two-itemized drugs for healing a given disease. This TDPD model considers not only the annual estimated number of patients suffering from the given disease, the treatment courses, and the unit profit of each drug, but also the strength of the patient's perception on treatment quality, the different purchasing price of each drug with quantity discounts, the ordering cost, the holding cost, and other related costs to determine the optimal order quantity of each drug for achieving the maximum profit. A computerized solving program proposed in this paper applies tabu search technique as the main program and the all-units quantity discounts for economic order quantity as the sub-program to solve such a combinatorial problem, as well as perform sensitivity analyses on the changes by the strength of the patient's perception on treatment quality and the changes of annual estimated number of patients for the given disease. Two drugs, Lipitor and Gemnpid, to heal a disease ‘Hyperlipidaemia’ are considered as a case example in this study. This paper contributes a prototype quantitative method of purchasing decision for a given disease to a decision-maker with profound insights.

Suggested Citation

  • C-H Lan & C-C Chen, 2007. "Optimal purchase of two-itemized drugs for a disease," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 309-316, March.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:3:d:10.1057_palgrave.jors.2602145
    DOI: 10.1057/palgrave.jors.2602145
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602145
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N A Wassan & I H Osman, 2002. "Tabu search variants for the mix fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(7), pages 768-782, July.
    2. Propper, Carol, 1996. "Market structure and prices: The responses of hospitals in the UK National Health Service to competition," Journal of Public Economics, Elsevier, vol. 61(3), pages 307-335, September.
    3. Fuchs, Victor R., 2000. "The future of health economics1," Journal of Health Economics, Elsevier, vol. 19(2), pages 141-157, March.
    4. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    5. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    6. Allen, Robin, 1992. "Policy implications of recent hospital competition studies," Journal of Health Economics, Elsevier, vol. 11(3), pages 347-351, October.
    7. de Ruyter, Ko & Bloemer, Jose & Peeters, Pascal, 1997. "Merging service quality and service satisfaction. An empirical test of an integrative model," Journal of Economic Psychology, Elsevier, vol. 18(4), pages 387-406, June.
    8. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    2. Hai Wang, 2019. "Routing and Scheduling for a Last-Mile Transportation System," Service Science, INFORMS, vol. 53(1), pages 131-147, February.
    3. Shao, Saijun & Xu, Gangyan & Li, Ming & Huang, George Q., 2019. "Synchronizing e-commerce city logistics with sliding time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 17-28.
    4. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    5. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    6. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    7. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    8. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    9. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    10. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    11. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    12. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    13. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    14. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    15. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    16. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    17. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    18. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    19. Sadan Kulturel-Konak & Bryan A. Norman & David W. Coit & Alice E. Smith, 2004. "Exploiting Tabu Search Memory in Constrained Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 241-254, August.
    20. Ouzineb, Mohamed & Nourelfath, Mustapha & Gendreau, Michel, 2008. "Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1257-1272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:3:d:10.1057_palgrave.jors.2602145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.