IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i4p655-667.html
   My bibliography  Save this article

Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design

Author

Listed:
  • Ilfat Ghamlouche

    (Département d'informatique et recherche opérationnelle and Centre de recherche sur les transports, Université de Montréal, C.P.6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7)

  • Teodor Gabriel Crainic

    (Département de management et technologie, Université du Québec à Montréal, and Centre de recherche sur les transports, Université de Montréal, Montréal, Québec, Canada)

  • Michel Gendreau

    (Département d'informatique et recherche opérationnelle and Centre de recherche sur les transports, Université de Montréal, Montréal, Québec, Canada)

Abstract

We propose new cycle-based neighbourhood structures for metaheuristics aimed at the fixed-charge capacitated multicommodity network design formulation. The neighbourhood defines moves that explicitly take into account the impact on the total design cost of potential modifications to the flow distribution of several commodities simultaneously. Moves are identified through a shortest-pathlike network optimization procedure and proceed by redirecting flow around cycles and closing and opening design arcs accordingly. These neighbourhoods are evaluated and tested within a simple tabu search algorithm. Experimental results show that the proposed approach is quite powerful and outperforms existing methods reported in the literature.

Suggested Citation

  • Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:655-667
    DOI: 10.1287/opre.51.4.655.16098
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.4.655.16098
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.4.655.16098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    2. Warren B. Powell, 1986. "A Local Improvement Heuristic for the Design of Less-than-Truckload Motor Carrier Networks," Transportation Science, INFORMS, vol. 20(4), pages 246-257, November.
    3. Teodor Gabriel Crainic & Michel Gendreau & Judith M. Farvolden, 2000. "A Simplex-Based Tabu Search Method for Capacitated Network Design," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 223-236, August.
    4. Yiannis A. Koskosidis & Warren B. Powell & Marius M. Solomon, 1992. "An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints," Transportation Science, INFORMS, vol. 26(2), pages 69-85, May.
    5. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    6. John J. Jarvis & Oscar Mejia Martinez, 1977. "A Sensitivity Analysis of Multicommodity Network Flows," Transportation Science, INFORMS, vol. 11(4), pages 299-306, November.
    7. Kaj Holmberg & Di Yuan, 2000. "A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem," Operations Research, INFORMS, vol. 48(3), pages 461-481, June.
    8. Judith M. Farvolden & Warren B. Powell, 1994. "Subgradient Methods for the Service Network Design Problem," Transportation Science, INFORMS, vol. 28(3), pages 256-272, August.
    9. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teodor Gabriel Crainic & Michel Gendreau & Judith M. Farvolden, 2000. "A Simplex-Based Tabu Search Method for Capacitated Network Design," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 223-236, August.
    2. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar & Mohammad Hassan Sharifitabar, 2015. "A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 48-58, February.
    3. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    4. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    5. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    6. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    7. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    8. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    9. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    10. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    11. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    12. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    13. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    14. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    15. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    16. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.
    17. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    18. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    19. C-H Lan & C-C Chen, 2007. "Optimal purchase of two-itemized drugs for a disease," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 309-316, March.
    20. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:655-667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.