Addressing complex seasonal patterns in hotel forecasting: a comparative study
Author
Abstract
Suggested Citation
DOI: 10.1057/s41272-024-00494-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Diamantis Koutsandreas & Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2022. "On the selection of forecasting accuracy measures," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(5), pages 937-954, May.
- Weatherford, Larry R. & Kimes, Sheryl E., 2003. "A comparison of forecasting methods for hotel revenue management," International Journal of Forecasting, Elsevier, vol. 19(3), pages 401-415.
- Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
- Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
- Naragain Phumchusri & Phoom Ungtrakul, 2020. "Hotel daily demand forecasting for high-frequency and complex seasonality data: a case study in Thailand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 8-25, February.
- Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Yunhao Liu & Gengzhong Feng & Kwai-Sang Chin & Shaolong Sun & Shouyang Wang, 2023. "Daily tourism demand forecasting: the impact of complex seasonal patterns and holiday effects," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(10), pages 1573-1592, May.
- Naragain Phumchusri & Poonnawit Suwatanapongched, 2023. "Forecasting hotel daily room demand with transformed data using time series methods," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(1), pages 44-56, February.
- Apostolos Ampountolas, 2019. "Forecasting hotel demand uncertainty using time series Bayesian VAR models," Tourism Economics, , vol. 25(5), pages 734-756, August.
- Luis Nobre Pereira & Vitor Cerqueira, 2022. "Forecasting hotel demand for revenue management using machine learning regression methods," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(17), pages 2733-2750, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Apostolos Ampountolas, 2019. "Forecasting hotel demand uncertainty using time series Bayesian VAR models," Tourism Economics, , vol. 25(5), pages 734-756, August.
- Jacobs, Bas & Tobi, Hilde & Hengeveld, Geerten M., 2024. "Linking error measures to model questions," Ecological Modelling, Elsevier, vol. 487(C).
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Jorge V Pérez-RodrÃguez & Juan M Hernández & Julián Andrada-Félix, 2024. "Modelling prices and volatilities in the sharing economy," Tourism Economics, , vol. 30(5), pages 1189-1215, August.
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
- Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
- Dong Zhang & Chong Wu, 2023. "What online review features really matter? An explainable deep learning approach for hotel demand forecasting," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(9), pages 1100-1117, September.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
More about this item
Keywords
Complex seasonal patterns; Multiple seasonalities; TBATS; MSTL; Forecasting accuracy; Hotel demand;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:24:y:2025:i:2:d:10.1057_s41272-024-00494-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.