IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v22y2023i1d10.1057_s41272-021-00363-6.html
   My bibliography  Save this article

Forecasting hotel daily room demand with transformed data using time series methods

Author

Listed:
  • Naragain Phumchusri

    (Chulalongkorn University)

  • Poonnawit Suwatanapongched

    (Chulalongkorn University)

Abstract

Increasing tourism and economic growth have led to a remarkably increase in demand and competition for hotel business in Thailand. This paper aims to explore the benefits of data transforming to help forecast hotel daily room demand for a case-study hotel. The proposed results can be a forecasting framework for other hotels with similar demand patterns. The case-study hotel is a local 4-star, 97-room hotel in Thailand. The recorded data of daily room demand from 2016 to 2019 are used. For room demand forecasting, two different datasets of daily demand are used, i.e., pre-processed data and transformed data by smoothing technique. Different time series forecasting models are performed: (1) Same day last year, (2) Holt–Winters, (3) Seasonal Autoregressive integrated moving average (SARIMA), and (4) Box–Jenkins Box–Cox transformation trigonometric ARMA errors trend and multiple seasonal patterns. We compared the accuracy of each model in forecasting of room demand with the actual room occupancies in 2019. The model accuracy is evaluated using mean absolute error (MAE), mean absolute percentage error (MAPE), and median absolute percentage error (MdAPE). It is found that SARIMA using transformed dataset provided the best accuracy (MAE, 6.18; MAPE, 25.04%; MdAPE, 13.64%) and best fit with plots for 2-week forecast horizon of room demand data. This paper introduces the use of transformed dataset to increase the performance of SARIMA model, as compared to the pre-processed data. To our knowledge, unlike other research, this paper proposed the method of data pre-processing and data smoothing to deal with the high variation in room demand data.

Suggested Citation

  • Naragain Phumchusri & Poonnawit Suwatanapongched, 2023. "Forecasting hotel daily room demand with transformed data using time series methods," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(1), pages 44-56, February.
  • Handle: RePEc:pal:jorapm:v:22:y:2023:i:1:d:10.1057_s41272-021-00363-6
    DOI: 10.1057/s41272-021-00363-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-021-00363-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-021-00363-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Naragain Phumchusri & Phoom Ungtrakul, 2020. "Hotel daily demand forecasting for high-frequency and complex seasonality data: a case study in Thailand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 8-25, February.
    3. Weatherford, Larry R. & Kimes, Sheryl E., 2003. "A comparison of forecasting methods for hotel revenue management," International Journal of Forecasting, Elsevier, vol. 19(3), pages 401-415.
    4. Haensel, Alwin & Koole, Ger, 2011. "Booking horizon forecasting with dynamic updating: A case study of hotel reservation data," International Journal of Forecasting, Elsevier, vol. 27(3), pages 942-960, July.
    5. Haensel, Alwin & Koole, Ger, 2011. "Booking horizon forecasting with dynamic updating: A case study of hotel reservation data," International Journal of Forecasting, Elsevier, vol. 27(3), pages 942-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Ampountolas, 2025. "Addressing complex seasonal patterns in hotel forecasting: a comparative study," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 24(2), pages 143-152, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naragain Phumchusri & Phoom Ungtrakul, 2020. "Hotel daily demand forecasting for high-frequency and complex seasonality data: a case study in Thailand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 8-25, February.
    2. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    3. Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    4. Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
    5. E. Martinez-De-Pison & J. Fernandez-Ceniceros & A. V. Pernia-Espinoza & F. J. Martinez-De-Pison & Andres Sanz-Garcia, 2016. "Hotel Reservation Forecasting Using Flexible Soft Computing Techniques: A Case of Study in a Spanish Hotel," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1211-1234, September.
    6. Larry Weatherford, 2016. "The history of forecasting models in revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(3), pages 212-221, July.
    7. Timothy Webb, 2022. "Forecasting at capacity: the bias of unconstrained forecasts in model evaluation," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 645-656, December.
    8. Apostolos Ampountolas, 2019. "Forecasting hotel demand uncertainty using time series Bayesian VAR models," Tourism Economics, , vol. 25(5), pages 734-756, August.
    9. Larissa Koupriouchina & Jean-Pierre van der Rest & Zvi Schwartz, 2023. "Judgmental Adjustments of Algorithmic Hotel Occupancy Forecasts: Does User Override Frequency Impact Accuracy at Different Time Horizons?," Tourism Economics, , vol. 29(8), pages 2143-2164, December.
    10. Haensel, Alwin & Koole, Ger, 2011. "Booking horizon forecasting with dynamic updating: A case study of hotel reservation data," International Journal of Forecasting, Elsevier, vol. 27(3), pages 942-960, July.
    11. Noelia Oses & Jon Kepa Gerrikagoitia & Aurkene Alzua, 2016. "Modelling and prediction of a destination’s monthly average daily rate and occupancy rate based on hotel room prices offered online," Tourism Economics, , vol. 22(6), pages 1380-1403, December.
    12. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    13. Michael Murimi & Billy Wadongo & Tom Olielo, 2021. "Determinants of revenue management practices and their impacts on the financial performance of hotels in Kenya: a proposed theoretical framework," Future Business Journal, Springer, vol. 7(1), pages 1-7, December.
    14. Apostolos Ampountolas & Mark Legg, 2024. "Predicting daily hotel occupancy: a practical application for independent hotels," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(3), pages 197-205, June.
    15. Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
    16. Apostolos Ampountolas, 2025. "Addressing complex seasonal patterns in hotel forecasting: a comparative study," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 24(2), pages 143-152, April.
    17. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    18. Đukec, Damira & Čanadi, Vesna, 2019. "Yield Management in the Hotel Industry of Croatia," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 309-316, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    19. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    20. Denafas, Gintaras & Ruzgas, Tomas & Martuzevičius, Dainius & Shmarin, Sergey & Hoffmann, Michael & Mykhaylenko, Valeriy & Ogorodnik, Stanislav & Romanov, Mikhail & Neguliaeva, Ekaterina & Chusov, Alex, 2014. "Seasonal variation of municipal solid waste generation and composition in four East European cities," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 22-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:22:y:2023:i:1:d:10.1057_s41272-021-00363-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.