IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v13y2025i1d10.1057_s41270-024-00301-6.html
   My bibliography  Save this article

The relationship between the quality of big data marketing analytics and marketing agility of firms: the impact of the decision-making role

Author

Listed:
  • Matti Haverila

    (Thompson Rivers University)

  • Kai Haverila

    (Concordia University)

  • Mohammad Osman Gani

    (University of British Columbia in Okanagan)

  • Muhammed Mohiuddin

    (University of Laval)

Abstract

Against the backdrop of the resource-based and dynamic capabilities view, this paper examines the impact of technology and information quality on marketing agility and the effect of the decision-making role on technology and information quality in the context of big data marketing analytics. Data were acquired from 236 marketing professionals in the U.S. and Canada working in companies with at least limited experience in big data deployment and analyzed with PLS-SEM. The findings indicate that both the information and technology quality are related to the marketing agility of the firms. Moreover, the result also shows a positive and significant association between decision-making role and information quality. This research provides an understanding of the impact of the quality of BDMA on marketing agility as it relates to the quality of information and a firm's technology, as well as the positive relationship of the decision-making on the aforementioned relationships.

Suggested Citation

  • Matti Haverila & Kai Haverila & Mohammad Osman Gani & Muhammed Mohiuddin, 2025. "The relationship between the quality of big data marketing analytics and marketing agility of firms: the impact of the decision-making role," Journal of Marketing Analytics, Palgrave Macmillan, vol. 13(1), pages 162-179, March.
  • Handle: RePEc:pal:jmarka:v:13:y:2025:i:1:d:10.1057_s41270-024-00301-6
    DOI: 10.1057/s41270-024-00301-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-024-00301-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-024-00301-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi, Maomao & Huang, Rui & George, Joey F., 2020. "Collaboration in demand-driven supply chain: Based on a perspective of governance and IT-business strategic alignment," International Journal of Information Management, Elsevier, vol. 52(C).
    2. Hair, Joe F. & Howard, Matt C. & Nitzl, Christian, 2020. "Assessing measurement model quality in PLS-SEM using confirmatory composite analysis," Journal of Business Research, Elsevier, vol. 109(C), pages 101-110.
    3. Felipe, Carmen M. & Roldán, José L. & Leal-Rodríguez, Antonio L., 2016. "An explanatory and predictive model for organizational agility," Journal of Business Research, Elsevier, vol. 69(10), pages 4624-4631.
    4. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    5. Marko Sarstedt & Erik Mooi, 2019. "A Concise Guide to Market Research," Springer Texts in Business and Economics, Springer, edition 3, number 978-3-662-56707-4, March.
    6. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    7. Tugba Karaboga & Cemal Zehir & Ekrem Tatoglu & H. Aykut Karaboga & Abderaouf Bouguerra, 2023. "Big data analytics management capability and firm performance: the mediating role of data-driven culture," Review of Managerial Science, Springer, vol. 17(8), pages 2655-2684, November.
    8. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    9. Raguseo, Elisabetta, 2018. "Big data technologies: An empirical investigation on their adoption, benefits and risks for companies," International Journal of Information Management, Elsevier, vol. 38(1), pages 187-195.
    10. Alla Cherep & Valentina Voronkova & Olena Androsova, 2022. "Transformational Changes In Organizational Management And Human Resources In The Digital Age," Baltic Journal of Economic Studies, Publishing house "Baltija Publishing", vol. 8(3).
    11. Kar, Arpan Kumar & Dwivedi, Yogesh K., 2020. "Theory building with big data-driven research – Moving away from the “What” towards the “Why”," International Journal of Information Management, Elsevier, vol. 54(C).
    12. Sarstedt, Marko & Hair, Joseph F. & Cheah, Jun-Hwa & Becker, Jan-Michael & Ringle, Christian M., 2019. "How to specify, estimate, and validate higher-order constructs in PLS-SEM," Australasian marketing journal, Elsevier, vol. 27(3), pages 197-211.
    13. Lin, Yini & Wu, Lei-Yu, 2014. "Exploring the role of dynamic capabilities in firm performance under the resource-based view framework," Journal of Business Research, Elsevier, vol. 67(3), pages 407-413.
    14. Khan, Huda, 2020. "Is marketing agility important for emerging market firms in advanced markets?," International Business Review, Elsevier, vol. 29(5).
    15. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    16. Ehsan Samiei & Jafar Habibi, 2020. "The Mutual Relation Between Enterprise Resource Planning and Knowledge Management: A Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 53-66, March.
    17. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Amit Kumar Kushwaha & Ruchika Pharswan & Prashant Kumar & Arpan Kumar Kar, 2023. "How Do Users Feel When They Use Artificial Intelligence for Decision Making? A Framework for Assessing Users’ Perception," Information Systems Frontiers, Springer, vol. 25(3), pages 1241-1260, June.
    19. Steven Ji-fan Ren & Samuel Fosso Wamba & Shahriar Akter & Rameshwar Dubey & Stephen J. Childe, 2017. "Modelling quality dynamics, business value and firm performance in a big data analytics environment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5011-5026, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Osama Musa Ali Al-Darras & Cem Tanova, 2022. "From Big Data Analytics to Organizational Agility: What Is the Mechanism?," SAGE Open, , vol. 12(2), pages 21582440221, June.
    3. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    4. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    5. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    6. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Traditional Marketing Analytics, Big Data Analytics, Big Data System Quality and the Success of New Product Development," OSF Preprints 9auec, Center for Open Science.
    7. Showimy Aldossari & Umi Asma’ Mokhtar & Ahmad Tarmizi Abdul Ghani, 2023. "Factor Influencing the Adoption of Big Data Analytics: A Systematic Literature and Experts Review," SAGE Open, , vol. 13(4), pages 21582440231, December.
    8. Côrte-Real, Nadine & Ruivo, Pedro & Oliveira, Tiago & Popovič, Aleš, 2019. "Unlocking the drivers of big data analytics value in firms," Journal of Business Research, Elsevier, vol. 97(C), pages 160-173.
    9. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    10. Zhang, Yucheng & Hou, Zhongwei & Yang, Feifei & Yang, Miles M. & Wang, Zhiling, 2021. "Discovering the evolution of resource-based theory: Science mapping based on bibliometric analysis," Journal of Business Research, Elsevier, vol. 137(C), pages 500-516.
    11. Luther Yuong Qai Chong & Thien Sang Lim, 2022. "Pull and Push Factors of Data Analytics Adoption and Its Mediating Role on Operational Performance," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    12. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    13. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    14. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    15. Mujahid Mohiuddin Babu & Mahfuzur Rahman & Ashraful Alam & Bidit Lal Dey, 2024. "Exploring big data-driven innovation in the manufacturing sector: evidence from UK firms," Annals of Operations Research, Springer, vol. 333(2), pages 689-716, February.
    16. Elisabetta Raguseo & Claudio Vitari, 2017. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," Grenoble Ecole de Management (Post-Print) halshs-01923259, HAL.
    17. Francesco Badia & Fabio Donato, 2022. "Opportunities and risks in using big data to support management control systems: A multiple case study," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(3), pages 39-63.
    18. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    19. Tino T. Herden & Steffen Bunzel, 2018. "Archetypes of Supply Chain Analytics Initiatives—An Exploratory Study," Logistics, MDPI, vol. 2(2), pages 1-20, May.
    20. Dwivedi, Yogesh K & Shareef, Mahmud A & Akram, Muhammad S & Bhatti, Zeeshan A & Rana, Nripendra P, 2022. "Examining the effects of enterprise social media on operational and social performance during environmental disruption," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:13:y:2025:i:1:d:10.1057_s41270-024-00301-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.