IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v54y2020ics0268401220311257.html
   My bibliography  Save this article

Theory building with big data-driven research – Moving away from the “What” towards the “Why”

Author

Listed:
  • Kar, Arpan Kumar
  • Dwivedi, Yogesh K.

Abstract

Data availability and access to various platforms, is changing the nature of Information Systems (IS) studies. Such studies often use large datasets, which may incorporate structured and unstructured data, from various platforms. The questions that such papers address, in turn, may attempt to use methods from computational science like sentiment mining, text mining, network science and image analytics to derive insights. However, there is often a weak theoretical contribution in many of these studies. We point out the need for such studies to contribute back to the IS discipline, whereby findings can explain more about the phenomenon surrounding the interaction of people with technology artefacts and the ecosystem within which these contextual usage is situated. Our opinion paper attempts to address this gap and provide insights on the methodological adaptations required in “big data studies” to be converted into “IS research” and contribute to theory building in information systems.

Suggested Citation

  • Kar, Arpan Kumar & Dwivedi, Yogesh K., 2020. "Theory building with big data-driven research – Moving away from the “What” towards the “Why”," International Journal of Information Management, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401220311257
    DOI: 10.1016/j.ijinfomgt.2020.102205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401220311257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2020.102205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401220311257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.