IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v97y2019icp160-173.html

Unlocking the drivers of big data analytics value in firms

Author

Listed:
  • Côrte-Real, Nadine
  • Ruivo, Pedro
  • Oliveira, Tiago
  • Popovič, Aleš

Abstract

Although big data analytics (BDA) is considered the next “frontier” in data science by creating potential business opportunities, the way to extract those opportunities is unclear. This paper aims to understand the antecedents of BDA value at a firm level. The authors performed a study using a mixed methodology approach. First, by carrying out a Delphi study to explore and rank the antecedents affecting the creation of BDA value. Based on the Delphi results, we propose an empirically validated model supported by a survey conducted on 175 European firms to explain the antecedents of BDA sustained value. The results show that the proposed model explains 62% of BDA sustained value at the firm level, where the most critical contributor is BDA use. We provide directions for managers to support their decisions on BDA strategy definition and refinement. For academics, we extend BDA value literature and outline some potential research opportunities.

Suggested Citation

  • Côrte-Real, Nadine & Ruivo, Pedro & Oliveira, Tiago & Popovič, Aleš, 2019. "Unlocking the drivers of big data analytics value in firms," Journal of Business Research, Elsevier, vol. 97(C), pages 160-173.
  • Handle: RePEc:eee:jbrese:v:97:y:2019:i:c:p:160-173
    DOI: 10.1016/j.jbusres.2018.12.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296318306908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2018.12.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yini & Wu, Lei-Yu, 2014. "Exploring the role of dynamic capabilities in firm performance under the resource-based view framework," Journal of Business Research, Elsevier, vol. 67(3), pages 407-413.
    2. Delen, Dursun & Zolbanin, Hamed M., 2018. "The analytics paradigm in business research," Journal of Business Research, Elsevier, vol. 90(C), pages 186-195.
    3. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    4. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    5. William Yeoh & Andy Koronios & Jing Gao, 2008. "Managing the Implementation of Business Intelligence Systems: A Critical Success Factors Framework," International Journal of Enterprise Information Systems (IJEIS), IGI Global Scientific Publishing, vol. 4(3), pages 79-94, July.
    6. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    7. Akkermans, Henk A. & Bogerd, Paul & Yucesan, Enver & van Wassenhove, Luk N., 2003. "The impact of ERP on supply chain management: Exploratory findings from a European Delphi study," European Journal of Operational Research, Elsevier, vol. 146(2), pages 284-301, April.
    8. Kevin Zhu & Kenneth L. Kraemer, 2005. "Post-Adoption Variations in Usage and Value of E-Business by Organizations: Cross-Country Evidence from the Retail Industry," Information Systems Research, INFORMS, vol. 16(1), pages 61-84, March.
    9. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    10. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    11. Côrte-Real, Nadine & Oliveira, Tiago & Ruivo, Pedro, 2017. "Assessing business value of Big Data Analytics in European firms," Journal of Business Research, Elsevier, vol. 70(C), pages 379-390.
    12. Wamba, Samuel Fosso & Gunasekaran, Angappa & Akter, Shahriar & Ren, Steven Ji-fan & Dubey, Rameshwar & Childe, Stephen J., 2017. "Big data analytics and firm performance: Effects of dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 356-365.
    13. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    14. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    15. Shirish Jeble & Rameshwar Dubey & Stephen J. Childe & Thanos Papadopoulos & David Roubaud & Anand Prakash, 2018. "Impact of big data and predictive analytics capability on supply chain sustainability," Post-Print hal-02061341, HAL.
    16. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    17. Gary C. Moore & Izak Benbasat, 1991. "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation," Information Systems Research, INFORMS, vol. 2(3), pages 192-222, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemaghaei, Maryam & Calic, Goran, 2019. "Does big data enhance firm innovation competency? The mediating role of data-driven insights," Journal of Business Research, Elsevier, vol. 104(C), pages 69-84.
    2. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    3. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    4. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    5. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    6. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    7. Candice WALLS & Brian BARNARD, 2020. "Success Factors of Big Data to Achieve Organisational Performance: Theoretical Perspectives," Expert Journal of Business and Management, Sprint Investify, vol. 8(1), pages 1-16.
    8. Sun, Pengfei & Yuan, Chunhui & Li, Xiaolong & Di, Jia, 2024. "Big data analytics, firm risk and corporate policies: Evidence from China," Research in International Business and Finance, Elsevier, vol. 70(PB).
    9. Ciampi, Francesco & Demi, Stefano & Magrini, Alessandro & Marzi, Giacomo & Papa, Armando, 2021. "Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation," Journal of Business Research, Elsevier, vol. 123(C), pages 1-13.
    10. Conboy, Kieran & Mikalef, Patrick & Dennehy, Denis & Krogstie, John, 2020. "Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda," European Journal of Operational Research, Elsevier, vol. 281(3), pages 656-672.
    11. Mihai BOGDAN & Anca BORZA, 2019. "Big Data Analytics and Organizational Performance: A Meta-Analysis Study," Management and Economics Review, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 4(2), pages 1-13, June.
    12. Vicky Ching Gu & Bin Zhou & Qing Cao & Jeffery Adams, 2021. "Exploring the relationship between supplier development, big data analytics capability, and firm performance," Annals of Operations Research, Springer, vol. 302(1), pages 151-172, July.
    13. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    14. Aftab, Junaid & Wei, Feng & Srivastava, Mohit & Abid, Nabila & Ishaq, Muhammad Ishtiaq, 2025. "Intermediating mechanisms and market conditions in big data knowledge management for enhanced market performance," Technological Forecasting and Social Change, Elsevier, vol. 219(C).
    15. Alberto Bertello & Alberto Ferraris & Stefano Bresciani & Paola Bernardi, 2021. "Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(4), pages 1035-1055, December.
    16. Nguyen Anh Khoa Dam & Thang Le Dinh & William Menvielle, 2019. "A systematic literature review of big data adoption in internationalization," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 182-195, September.
    17. Elisabetta Raguseo & Claudio Vitari, 2017. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," Grenoble Ecole de Management (Post-Print) halshs-01923259, HAL.
    18. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    19. Zhang, Yucheng & Hou, Zhongwei & Yang, Feifei & Yang, Miles M. & Wang, Zhiling, 2021. "Discovering the evolution of resource-based theory: Science mapping based on bibliometric analysis," Journal of Business Research, Elsevier, vol. 137(C), pages 500-516.
    20. Elisabetta Raguseo & Claudio Vitari, 2017. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," Post-Print halshs-01923259, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:97:y:2019:i:c:p:160-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.