IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v11y2023i4d10.1057_s41270-022-00186-3.html
   My bibliography  Save this article

Increasing the robustness of uplift modeling using additional splits and diversified leaf select

Author

Listed:
  • Frank Oechsle

    (Karlsruhe Institute of Technology (KIT))

Abstract

While the COVID-19 pandemic negatively affects the world economy in general, the crisis accelerates concurrently the rapidly growing subscription business and online purchases. This provokes a steadily increasing demand of reliable measures to prevent customer churn which unchanged is not covered. The research analyses how preventive uplift modeling approaches based on decision trees can be modified. Thereby, it aims to reduce the risk of churn increases in scenarios with systematically occurring local estimation errors. Additionally, it compares several novel spatial distance and churn likelihood respecting selection methods applied on a real-world dataset. In conclusion, it is a procedure with incorporated additional and engineered decision tree splits that dominates the results of an appropriate Monte Carlo simulation. This newly introduced method lowers probability and negative impacts of counterproductive churn prevention campaigns without substantial loss of expected churn likelihood reduction effected by those same campaigns.

Suggested Citation

  • Frank Oechsle, 2023. "Increasing the robustness of uplift modeling using additional splits and diversified leaf select," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 738-746, December.
  • Handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3
    DOI: 10.1057/s41270-022-00186-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-022-00186-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-022-00186-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    2. Mirjana Pejić Bach & Jasmina Pivar & Božidar Jaković, 2021. "Churn Management in Telecommunications: Hybrid Approach Using Cluster Analysis and Decision Trees," JRFM, MDPI, vol. 14(11), pages 1-25, November.
    3. Atef Shaar & Talel Abdessalem & Olivier Segard, 2016. "Pessimistic uplift modeling," Post-Print hal-02376023, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Wager, 2016. "Comments on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 261-263, June.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    4. Sophie van Huellen & Duo Qin, 2019. "Compulsory Schooling and Returns to Education: A Re-Examination," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    5. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    6. Andr'es Ram'irez-Hassan & Raquel Vargas-Correa & Gustavo Garc'ia & Daniel Londo~no, 2020. "Optimal selection of the number of control units in kNN algorithm to estimate average treatment effects," Papers 2008.06564, arXiv.org.
    7. Ken Nishimatsu & Akiya Inoue, 2023. "User Intent-Based Segmentation Analysis for Internet Access Services," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 14(1), pages 1-21, January.
    8. Burgess, Simon & Metcalfe, Robert & Sadoff, Sally, 2021. "Understanding the response to financial and non-financial incentives in education: Field experimental evidence using high-stakes assessments," Economics of Education Review, Elsevier, vol. 85(C).
    9. Marcel Fafchamps & Julien Labonne, 2016. "Using Split Samples to Improve Inference about Causal Effects," NBER Working Papers 21842, National Bureau of Economic Research, Inc.
    10. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    11. Jonathan M.V. Davis & Sara B. Heller, 2017. "Rethinking the Benefits of Youth Employment Programs: The Heterogeneous Effects of Summer Jobs," NBER Working Papers 23443, National Bureau of Economic Research, Inc.
    12. Florian Gunsilius & Meng Hsuan Hsieh & Myung Jin Lee, 2022. "Tangential Wasserstein Projections," Papers 2207.14727, arXiv.org, revised Aug 2022.
    13. Stefano Cabras & J. D. Tena, 2023. "Implicit institutional incentives and individual decisions: Causal inference with deep learning models," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(6), pages 3739-3754, September.
    14. Hunt Allcott & Judd B. Kessler, 2015. "The Welfare Effects of Nudges: A Case Study of Energy Use Social Comparisons," NBER Working Papers 21671, National Bureau of Economic Research, Inc.
    15. Haupt, Johannes & Lessmann, Stefan, 2020. "Targeting Cutsomers Under Response-Dependent Costs," IRTG 1792 Discussion Papers 2020-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Majid Bazarbash, 2019. "FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk," IMF Working Papers 2019/109, International Monetary Fund.
    17. Maria Nareklishvili & Nicholas Polson & Vadim Sokolov, 2022. "Feature Selection for Personalized Policy Analysis," Papers 2301.00251, arXiv.org, revised Jul 2023.
    18. Sonan Memon, 2021. "Machine Learning for Economists: An Introduction," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 60(2), pages 201-211.
    19. W. Bentley MacLeod, 2017. "Viewpoint: The human capital approach to inference," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(1), pages 5-39, February.
    20. Londhe Sanket Tanaji & Palwe Sushila, 2022. "Customer-Centric Sales Forecasting Model: RFM-ARIMA Approach," Business Systems Research, Sciendo, vol. 13(1), pages 35-45, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.