IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v11y2023i4d10.1057_s41270-022-00186-3.html
   My bibliography  Save this article

Increasing the robustness of uplift modeling using additional splits and diversified leaf select

Author

Listed:
  • Frank Oechsle

    (Karlsruhe Institute of Technology (KIT))

Abstract

While the COVID-19 pandemic negatively affects the world economy in general, the crisis accelerates concurrently the rapidly growing subscription business and online purchases. This provokes a steadily increasing demand of reliable measures to prevent customer churn which unchanged is not covered. The research analyses how preventive uplift modeling approaches based on decision trees can be modified. Thereby, it aims to reduce the risk of churn increases in scenarios with systematically occurring local estimation errors. Additionally, it compares several novel spatial distance and churn likelihood respecting selection methods applied on a real-world dataset. In conclusion, it is a procedure with incorporated additional and engineered decision tree splits that dominates the results of an appropriate Monte Carlo simulation. This newly introduced method lowers probability and negative impacts of counterproductive churn prevention campaigns without substantial loss of expected churn likelihood reduction effected by those same campaigns.

Suggested Citation

  • Frank Oechsle, 2023. "Increasing the robustness of uplift modeling using additional splits and diversified leaf select," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 738-746, December.
  • Handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3
    DOI: 10.1057/s41270-022-00186-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-022-00186-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-022-00186-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Atef Shaar & Talel Abdessalem & Olivier Segard, 2016. "Pessimistic uplift modeling," Post-Print hal-02376023, HAL.
    2. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    3. Mirjana Pejić Bach & Jasmina Pivar & Božidar Jaković, 2021. "Churn Management in Telecommunications: Hybrid Approach Using Cluster Analysis and Decision Trees," JRFM, MDPI, vol. 14(11), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    2. Andr'es Ram'irez-Hassan & Raquel Vargas-Correa & Gustavo Garc'ia & Daniel Londo~no, 2020. "Optimal selection of the number of control units in kNN algorithm to estimate average treatment effects," Papers 2008.06564, arXiv.org.
    3. Ken Nishimatsu & Akiya Inoue, 2023. "User Intent-Based Segmentation Analysis for Internet Access Services," International Journal of Strategic Decision Sciences (IJSDS), IGI Global Scientific Publishing, vol. 14(1), pages 1-21, January.
    4. Marcel Fafchamps & Julien Labonne, 2016. "Using Split Samples to Improve Inference about Causal Effects," NBER Working Papers 21842, National Bureau of Economic Research, Inc.
    5. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    6. Jonathan M.V. Davis & Sara B. Heller, 2020. "Rethinking the Benefits of Youth Employment Programs: The Heterogeneous Effects of Summer Jobs," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 664-677, October.
    7. Florian Gunsilius & Meng Hsuan Hsieh & Myung Jin Lee, 2022. "Tangential Wasserstein Projections," Papers 2207.14727, arXiv.org, revised Aug 2022.
    8. Burgess, Simon & Metcalfe, Robert & Sadoff, Sally, 2021. "Understanding the response to financial and non-financial incentives in education: Field experimental evidence using high-stakes assessments," Economics of Education Review, Elsevier, vol. 85(C).
    9. Hunt Allcott & Judd B. Kessler, 2015. "The Welfare Effects of Nudges: A Case Study of Energy Use Social Comparisons," NBER Working Papers 21671, National Bureau of Economic Research, Inc.
    10. Sonan Memon, 2021. "Machine Learning for Economists: An Introduction," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 60(2), pages 201-211.
    11. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    12. Daniel Ershov, 2018. "Competing with Superstars in the Mobile App Market," Working Papers 18-02, NET Institute.
    13. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
    14. Seungwoo Chin & Matthew E. Kahn & Hyungsik Roger Moon, 2020. "Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(3), pages 886-914, September.
    15. Sophie van Huellen & Duo Qin, 2019. "Compulsory Schooling and Returns to Education: A Re-Examination," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    16. W. Bentley MacLeod, 2017. "Viewpoint: The human capital approach to inference," Canadian Journal of Economics, Canadian Economics Association, vol. 50(1), pages 5-39, February.
    17. Rock, Rufus & Strauss, Ilan & O'Reilly, Tim & Mazzucato, Mariana, 2024. "Behind the clicks: Can Amazon allocate user attention as it pleases?," Information Economics and Policy, Elsevier, vol. 69(C).
    18. Enoch Hyunwook Kang & P. R. Kumar, 2023. "Bounded (O(1)) Regret Recommendation Learning via Synthetic Controls Oracle," Papers 2301.12571, arXiv.org, revised Jun 2023.
    19. Chen, Jingnan (Cecilia) & Fonseca, Miguel A. & Grimshaw, Shaun B., 2021. "When a nudge is (not) enough: Experiments on social information and incentives," European Economic Review, Elsevier, vol. 134(C).
    20. Rafael P. Greminger, 2022. "Trade-Offs Between Ranking Objectives: Reduced-Form Evidence and Structural Estimation," Papers 2210.16408, arXiv.org, revised Feb 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-022-00186-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.