IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63645-2.html
   My bibliography  Save this article

Temperature adaptive self-regenerating ionic thermoelectric cycles for time domain thermal energy harvesting

Author

Listed:
  • Qikai Li

    (City University of Hong Kong
    Southern University of Science and Technology)

  • Mao Yu

    (Southern University of Science and Technology)

  • Chunlin Pang

    (City University of Hong Kong)

  • Xinya Wu

    (City University of Hong Kong)

  • Shuaihua Wang

    (Southern University of Science and Technology)

  • Huan Li

    (Southern University of Science and Technology)

  • Yupeng Wang

    (Southern University of Science and Technology)

  • Weishu Liu

    (Southern University of Science and Technology)

  • Shien-Ping Feng

    (City University of Hong Kong)

Abstract

The rising demand for sustainable energy solutions has promoted significant interest in ionic thermoelectric materials, which convert low-grade waste heat into electrical energy through spatial temperature gradients. However, diurnal temperature variations, which offer potential for location-independent time-domain thermal energy, remain largely unexplored. To overcome the challenges of harvesting spatially limited thermal energy, this study presents an ionic thermoelectric cycle (t-ITC) designed for time-domain thermal energy harvesting, incorporating two gels with contrasting temperature coefficients. A temperature-adaptive self-regeneration (TASR) strategy is proposed to set the critical regeneration temperature (TCR) at the midpoint of temperature fluctuations, facilitating long-term device operation. The regeneration criteria are defined as neutralization of the electrochemical potential difference between separated cells, and a method based on shared counter-ion self-balancing is introduced. Employing a polyacrylamide-polyvinylpyrrolidone (PAM-PVP) matrix with KI3/KI and K3Fe(CN)6/K4Fe(CN)6 redox couples, both utilizing the same counter-ion K+ for regeneration, the t-ITC device attains a peak energy density of 3.28 kJ m–2 per cycle and a relative Carnot efficiency of 8.39% with 70% heat recuperation, under cycling conditions between 60 °C and 10 °C. This work highlights the potential of t-ITC devices for global-scale time-domain thermal energy on a global scale, across diverse environments, such as hot deserts and cold plateaus.

Suggested Citation

  • Qikai Li & Mao Yu & Chunlin Pang & Xinya Wu & Shuaihua Wang & Huan Li & Yupeng Wang & Weishu Liu & Shien-Ping Feng, 2025. "Temperature adaptive self-regenerating ionic thermoelectric cycles for time domain thermal energy harvesting," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63645-2
    DOI: 10.1038/s41467-025-63645-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63645-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63645-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuaihua Wang & Yuchen Li & Mao Yu & Qikai Li & Huan Li & Yupeng Wang & Jiajia Zhang & Kang Zhu & Weishu Liu, 2024. "High-performance cryo-temperature ionic thermoelectric liquid cell developed through a eutectic solvent strategy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ziqian Zhong & Bin He & Hans W. Chen & Deliang Chen & Tianjun Zhou & Wenjie Dong & Cunde Xiao & Shang-ping Xie & Xiangzhou Song & Lanlan Guo & Ruiqiang Ding & Lixia Zhang & Ling Huang & Wenping Yuan &, 2023. "Reversed asymmetric warming of sub-diurnal temperature over land during recent decades," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    4. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. LeBlanc, Saniya & Yee, Shannon K. & Scullin, Matthew L. & Dames, Chris & Goodson, Kenneth E., 2014. "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 313-327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    2. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    4. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    5. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    8. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    10. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    11. Qiang Leng & Feilong Li & Zhenxin Tao & Zhanwei Wang & Xi Wu, 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat," Energies, MDPI, vol. 17(21), pages 1-24, October.
    12. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    13. Bhattacharyya, Sankhadeep & Dinh, Quang Truong & McGordon, Andrew, 2025. "Optimising thermoelectric coolers for battery thermal management in light electric vehicles," Applied Energy, Elsevier, vol. 386(C).
    14. Hao, Mengyuan & Xiao, Gang & Qiu, Hao, 2025. "Experimental characteristics of thermionic energy converters employing barium-dispenser cathode and semiconductor anodes," Energy, Elsevier, vol. 325(C).
    15. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    16. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    17. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    18. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    19. Pengfei Zhao & Guangshi Li & Xiaolu Xiong & Peng Cheng & Zhongya Pang & Chenteng Sun & Hu Cheng & Caijuan Shi & Xing Yu & Qian Xu & Xingli Zou & Xionggang Lu, 2025. "Sub-minute synthesis and modulation of β/λ-MxTi3-xO5 ceramics towards accessible heat storage," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63645-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.