IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57604-0.html
   My bibliography  Save this article

Sub-minute synthesis and modulation of β/λ-MxTi3-xO5 ceramics towards accessible heat storage

Author

Listed:
  • Pengfei Zhao

    (Shanghai University)

  • Guangshi Li

    (Shanghai University
    Shanghai University)

  • Xiaolu Xiong

    (Shanghai University
    Chinese Academy of Sciences)

  • Peng Cheng

    (Shanghai University)

  • Zhongya Pang

    (Shanghai University
    Shanghai University)

  • Chenteng Sun

    (Shanghai University
    Shanghai University)

  • Hu Cheng

    (Chinese Academy of Sciences)

  • Caijuan Shi

    (Chinese Academy of Sciences)

  • Xing Yu

    (Shanghai University
    Shanghai University)

  • Qian Xu

    (Shanghai University
    Shanghai University)

  • Xingli Zou

    (Shanghai University
    Shanghai University)

  • Xionggang Lu

    (Shanghai University)

Abstract

Nearly 50% of global primary energy consumption is lost as low-temperature heat. λ-Ti3O5 holds promise for waste heat harvesting and reuse; however, achieving reversible phase transitions between its λ and β phases under accessible conditions remains a major challenge. Here, we proposed a simple laser method that incorporates element substitution for sub-minute synthesis (20–60 s) of λ-MxTi3-xO5 (M = Mg, Al, Sc, V, Cr, Mn, or Fe, 0.09 ≤ x ≤ 0.42). In particular, aluminum-substituted λ-AlxTi3-xO5 demonstrated the lowest energy barrier, with a transition pressure of 557 MPa and temperature of 363 K. Notably, compression of the (001) crystal plane could reduce the transition pressure to only 35–40 MPa, enabling the applicability of λ-AlxTi3-xO5 for wide applications in heat recovery and future lunar explorations.

Suggested Citation

  • Pengfei Zhao & Guangshi Li & Xiaolu Xiong & Peng Cheng & Zhongya Pang & Chenteng Sun & Hu Cheng & Caijuan Shi & Xing Yu & Qian Xu & Xingli Zou & Xionggang Lu, 2025. "Sub-minute synthesis and modulation of β/λ-MxTi3-xO5 ceramics towards accessible heat storage," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57604-0
    DOI: 10.1038/s41467-025-57604-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57604-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57604-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Mariette & M. Lorenc & H. Cailleau & E. Collet & L. Guérin & A. Volte & E. Trzop & R. Bertoni & X. Dong & B. Lépine & O. Hernandez & E. Janod & L. Cario & V. Ta Phuoc & S. Ohkoshi & H. Tokoro & L. , 2021. "Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    3. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hiroko Tokoro & Marie Yoshikiyo & Kenta Imoto & Asuka Namai & Tomomichi Nasu & Kosuke Nakagawa & Noriaki Ozaki & Fumiyoshi Hakoe & Kenji Tanaka & Kouji Chiba & Rie Makiura & Kosmas Prassides & Shin-ic, 2015. "External stimulation-controllable heat-storage ceramics," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Byron Ross & Sophia Haussener & Katharina Brinkert, 2023. "Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    3. Meiling Chen & Wenhao Liu & Pengcheng Ding & Fengwu Guo & Zhuo Li & Yanghan Chen & Wei Yi & Ye Sun & Jianchen Lu & Lev Kantorovich & Miao Yu, 2025. "Semiconductor-to-metal surface reconstruction in copper selenide/copper heterostructures steered by photoinduced interlayer atom migration," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    5. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    7. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    8. Qiang Leng & Feilong Li & Zhenxin Tao & Zhanwei Wang & Xi Wu, 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat," Energies, MDPI, vol. 17(21), pages 1-24, October.
    9. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    10. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    11. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    12. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    13. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    15. Kisorthman Vimalakanthan & Matthew Read & Ahmed Kovacevic, 2020. "Numerical Modelling and Experimental Validation of Twin-Screw Expanders," Energies, MDPI, vol. 13(18), pages 1-13, September.
    16. Marius Hervé & Gaël Privault & Elzbieta Trzop & Shintaro Akagi & Yves Watier & Serhane Zerdane & Ievgeniia Chaban & Ricardo G. Torres Ramírez & Celine Mariette & Alix Volte & Marco Cammarata & Matteo , 2024. "Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    19. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    20. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57604-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.