IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120307358.html
   My bibliography  Save this article

Recent developments in flexible thermoelectrics: From materials to devices

Author

Listed:
  • Fan, Zeng
  • Zhang, Yaoyun
  • Pan, Lujun
  • Ouyang, Jianyong
  • Zhang, Qian

Abstract

Thermoelectric (TE) materials/devices that can directly convert thermal energy into electricity provide a promising solution for sustainable energy development. As the flexible power supplies are urgently required for miniaturized and portable electronics, the development of flexible TE (FTE) devices, which have widespread application in the fields of power generation, flexible electronics, and wearable devices, has gained widespread attention. Over the past decades, research has largely focused on enhancing the ZT values of FTE materials and developing high-efficiency FTE generators (FTEGs). However, it is noted that in the past five years, research into FTE technologies is no longer confined to the electronic FTE materials and FTEGs. Many novel FTE applications, including self-powered multifunctional FTE sensors, ionic TE devices based on the Soret effect, multi-technology integrated TE devices, and even evaporation-driven quasi-TE nanogenerators, are emerging and demonstrate great practical significance. In this paper, recent advances achieved in wide FTE-related technologies are reviewed from the view of materials to devices. The specific structural designs and working principles of the FTE devices, the properties of the materials involved, the manufacturing strategies for device assembly, and their real functioning performances are comprehensively addressed with a few representative examples. Finally, several conclusions and future prospects for the development of FTE materials and devices are also provided. This review features a comprehensive understanding of the development roadmap for FTEs, which will help to guide future studies on flexible thermal energy harvesting/sensing applications and self-powered wearable electronics.

Suggested Citation

  • Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307358
    DOI: 10.1016/j.rser.2020.110448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120307358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Zhou & Qingxia Fan & Qiang Zhang & Le Cai & Kewei Li & Xiaogang Gu & Feng Yang & Nan Zhang & Yanchun Wang & Huaping Liu & Weiya Zhou & Sishen Xie, 2017. "High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Azure D. Avery & Ben H. Zhou & Jounghee Lee & Eui-Sup Lee & Elisa M. Miller & Rachelle Ihly & Devin Wesenberg & Kevin S. Mistry & Sarah L. Guillot & Barry L. Zink & Yong-Hyun Kim & Jeffrey L. Blackbur, 2016. "Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties," Nature Energy, Nature, vol. 1(4), pages 1-9, April.
    3. Fengjiao Zhang & Yaping Zang & Dazhen Huang & Chong-an Di & Daoben Zhu, 2015. "Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    4. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
    5. Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
    6. Viktoryia Shautsova & Themistoklis Sidiropoulos & Xiaofei Xiao & Nicholas A. Güsken & Nicola C. G. Black & Adam M. Gilbertson & Vincenzo Giannini & Stefan A. Maier & Lesley F. Cohen & Rupert F. Oulton, 2018. "Plasmon induced thermoelectric effect in graphene," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Kim, Sang Hoon & Min, Taesik & Choi, Jae Won & Baek, Seon Hwa & Choi, Joon-Phil & Aranas, Clodualdo, 2018. "Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables," Energy, Elsevier, vol. 144(C), pages 607-618.
    8. Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
    9. Yufei Ding & Yang Qiu & Kefeng Cai & Qin Yao & Song Chen & Lidong Chen & Jiaqing He, 2019. "High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    10. Ahmet-Hamdi Cavusoglu & Xi Chen & Pierre Gentine & Ozgur Sahin, 2017. "Potential for natural evaporation as a reliable renewable energy resource," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    11. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    12. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    13. Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
    14. LeBlanc, Saniya & Yee, Shannon K. & Scullin, Matthew L. & Dames, Chris & Goodson, Kenneth E., 2014. "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 313-327.
    15. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    16. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
    17. Hwang, Junphil & Kim, Hoon & Wijethunge, Dimuthu & Nandihalli, Nagaraj & Eom, Yoomin & Park, Hwanjoo & Kim, Jungwon & Kim, Woochul, 2017. "More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials," Applied Energy, Elsevier, vol. 205(C), pages 1459-1466.
    18. Xi, Hongxia & Luo, Lingai & Fraisse, Gilles, 2007. "Development and applications of solar-based thermoelectric technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 923-936, June.
    19. Dan Zhao & Anna Martinelli & Andreas Willfahrt & Thomas Fischer & Diana Bernin & Zia Ullah Khan & Maryam Shahi & Joseph Brill & Magnus P. Jonsson & Simone Fabiano & Xavier Crispin, 2019. "Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    20. Song, Haijun & Cai, Kefeng, 2017. "Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator," Energy, Elsevier, vol. 125(C), pages 519-525.
    21. We, Ju Hyung & Kim, Sun Jin & Cho, Byung Jin, 2014. "Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator," Energy, Elsevier, vol. 73(C), pages 506-512.
    22. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    23. Nara Kim & Samuel Lienemann & Ioannis Petsagkourakis & Desalegn Alemu Mengistie & Seyoung Kee & Thomas Ederth & Viktor Gueskine & Philippe Leclère & Roberto Lazzaroni & Xavier Crispin & Klas Tybrandt, 2020. "Elastic conducting polymer composites in thermoelectric modules," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    24. Dan Zhao & Simone Fabiano & Magnus Berggren & Xavier Crispin, 2017. "Ionic thermoelectric gating organic transistors," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    25. Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.
    26. Benday, Naman S. & Dryden, Daniel M. & Kornbluth, Kurt & Stroeve, Pieter, 2017. "A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions," Applied Energy, Elsevier, vol. 190(C), pages 764-771.
    27. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    28. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    29. Tingting Sun & Beiying Zhou & Qi Zheng & Lianjun Wang & Wan Jiang & Gerald Jeffrey Snyder, 2020. "Stretchable fabric generates electric power from woven thermoelectric fibers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    30. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    2. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    3. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    4. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    5. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    6. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    7. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    8. Kong, Deyue & Zhu, Wei & Guo, Zhanpeng & Deng, Yuan, 2019. "High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting," Energy, Elsevier, vol. 175(C), pages 292-299.
    9. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    10. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    11. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
    12. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    13. Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
    14. Fan, Shifa & Gao, Yuanwen & Rezania, Alireza, 2021. "Thermoelectric performance and stress analysis on wearable thermoelectric generator under bending load," Renewable Energy, Elsevier, vol. 173(C), pages 581-595.
    15. Wei, Haoxiang & Zhang, Jian & Han, Yang & Xu, Dongyan, 2022. "Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling," Applied Energy, Elsevier, vol. 326(C).
    16. Park, Hwanjoo & Eom, Yoomin & Lee, Dongkeon & Kim, Jiyong & Kim, Hoon & Park, Gimin & Kim, Woochul, 2019. "High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials," Energy, Elsevier, vol. 187(C).
    17. Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
    18. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    19. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    20. Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.