IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08835-5.html
   My bibliography  Save this article

High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator

Author

Listed:
  • Yufei Ding

    (Tongji University)

  • Yang Qiu

    (Southern University of Science and Technology)

  • Kefeng Cai

    (Tongji University)

  • Qin Yao

    (Chinese Academy of Science)

  • Song Chen

    (Fujian University of Technology)

  • Lidong Chen

    (Chinese Academy of Science)

  • Jiaqing He

    (Southern University of Science and Technology)

Abstract

Researches on flexible thermoelectric materials usually focus on conducting polymers and conducting polymer-based composites; however, it is a great challenge to obtain high thermoelectric properties comparable to inorganic counterparts. Here, we report an n-type Ag2Se film on flexible nylon membrane with an ultrahigh power factor ~987.4 ± 104.1 μWm−1K−2 at 300 K and an excellent flexibility (93% of the original electrical conductivity retention after 1000 bending cycles around a 8-mm diameter rod). The flexibility is attributed to a synergetic effect of the nylon membrane and the Ag2Se film intertwined with numerous high-aspect-ratio Ag2Se grains. A thermoelectric prototype composed of 4-leg of the Ag2Se film generates a voltage and a maximum power of 18 mV and 460 nW, respectively, at a temperature difference of 30 K. This work opens opportunities of searching for high performance thermoelectric film for flexible thermoelectric devices.

Suggested Citation

  • Yufei Ding & Yang Qiu & Kefeng Cai & Qin Yao & Song Chen & Lidong Chen & Jiaqing He, 2019. "High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08835-5
    DOI: 10.1038/s41467-019-08835-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08835-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08835-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    2. Svyatoslav Yatsyshyn & Oleksandra Hotra & Pylyp Skoropad & Tetiana Bubela & Mykola Mykyichuk & Orest Kochan & Oksana Boyko, 2023. "Investigating Thermoelectric Batteries Based on Nanostructured Materials," Energies, MDPI, vol. 16(9), pages 1-11, May.
    3. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Liu, Wei-Di & Yu, Yao & Dargusch, Matthew & Liu, Qingfeng & Chen, Zhi-Gang, 2021. "Carbon allotrope hybrids advance thermoelectric development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08835-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.