IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017748.html
   My bibliography  Save this article

Experimental characteristics of thermionic energy converters employing barium-dispenser cathode and semiconductor anodes

Author

Listed:
  • Hao, Mengyuan
  • Xiao, Gang
  • Qiu, Hao

Abstract

Thermionic energy converter (TEC) is a promising direct energy conversion technology which is expected to attain high efficiency approaching the ideal Carnot cycle. The exploration for low work function electrode materials and the alleviation of space charge effect have long been significant topics. In this work, TEC prototypes with Mo, n-type GaAs (nGaAs) and graphene/n-type GaAs Schottky heterojunction (Gr/nGaAs) anodes were developed and measured, respectively. The influences of cathode temperature, work function and space charge effect were analyzed by varying the cathode temperature and electrode gap. The electronic barrier was calculated to evaluate the space charge effect and exhibits an upward tendency with the increase of temperature and electrode gap. The experimental results indicate that the TEC with nGaAs anode exhibits the best performance. Notably, the output power of TEC with nGaAs anode shows an enhancement of 8.5-fold and 1.8-fold compared to that of Mo anode and Gr/nGaAs anode at 1398 K, respectively. In addition, the open-circuit voltage of nGaAs anode TEC was 0.57 V higher than that of the Gr/nGaAs anode TEC at 1398 K. This work not only provides a reference for the selection of TEC anode materials, but also paves the way for future researches aimed at achieving high output power in TECs.

Suggested Citation

  • Hao, Mengyuan & Xiao, Gang & Qiu, Hao, 2025. "Experimental characteristics of thermionic energy converters employing barium-dispenser cathode and semiconductor anodes," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017748
    DOI: 10.1016/j.energy.2025.136132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.