IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022882.html
   My bibliography  Save this article

Enhanced solar-to-hydrogen energy conversion utilizing microtubular solid oxide electrolysis cells as a volumetric solar absorber

Author

Listed:
  • Li, Jiabao
  • Luo, Jiancheng
  • Li, Hongxia
  • Wang, Pei

Abstract

Driving solid oxide electrolytic cells by solar power is a renewable way to produce green fuel. However, separating the solar heat collection process from the electrochemical process inevitably increases resistance of energy conversion. Herein we propose a concept of an integrated solar reactor that utilizes microtubule solid oxide electrolysis cell (SOEC) as volumetric solar absorber. This design concept not only shortens the transfer path of heat energy to chemical energy but also significantly increases the reaction density. Performance analysis demonstrates that the maximum energy efficiency can reach 65.11 % owing to the cavity effect. Assuming a typical photovoltaic efficiency of 20 %, the proposed reactor has a maximum solar-to-hydrogen efficiency of 17.18 %, and this value can increase to 20.64 % when integrated with the waste heat recovery system. Additionally, transient analysis reveals that since the external electric power is the main driving force of the reaction and can be easily controlled, the steam conversion ratio can be maintained continuously and stably at 88 % even under fluctuating solar input on a cloudy day. This stable characteristic of hydrogen production can significantly enhance the time-average efficiency of solar fuel conversion, demonstrating a substantial value for industrial applications.

Suggested Citation

  • Li, Jiabao & Luo, Jiancheng & Li, Hongxia & Wang, Pei, 2025. "Enhanced solar-to-hydrogen energy conversion utilizing microtubular solid oxide electrolysis cells as a volumetric solar absorber," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022882
    DOI: 10.1016/j.renene.2024.122220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Qi & Zhao, Jianguo & Chen, Chen & Jin, Weiya, 2023. "Modeling of CO2/H2O Co-electrolysis using solar-driven SOEC coupled with ammonia-based chemical heat pump," Renewable Energy, Elsevier, vol. 212(C), pages 128-137.
    2. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    3. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    4. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    5. Yingqi Liu & Liusheng Xiao & Hao Wang & Dingrong Ou & Jinliang Yuan, 2024. "Numerical Study of H 2 Production and Thermal Stress for Solid Oxide Electrolysis Cells with Various Ribs/Channels," Energies, MDPI, vol. 17(2), pages 1-26, January.
    6. Jin, Jian & Wei, Xin & Liu, Mingkai & Yu, Yuhang & Li, Wenjia & Kong, Hui & Hao, Yong, 2018. "A solar methane reforming reactor design with enhanced efficiency," Applied Energy, Elsevier, vol. 226(C), pages 797-807.
    7. Wang, P. & Li, J.B. & Zhou, L. & Liu, D.Y., 2020. "Acceptance-Rejection Sampling Based Monte Carlo Ray Tracing in Anisotropic Porous Media," Energy, Elsevier, vol. 199(C).
    8. Wang, Hongsheng & Liu, Tong & Kong, Hui, 2024. "Solar CO2 splitting coupling with PV, photon-enhanced thermionic emission cell and SOEC for efficient full-spectrum utilization in a wide temperature range," Applied Energy, Elsevier, vol. 367(C).
    9. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    10. Cheng, Z.D. & He, Y.L. & Cui, F.Q., 2013. "A new modelling method and unified code with MCRT for concentrating solar collectors and its applications," Applied Energy, Elsevier, vol. 101(C), pages 686-698.
    11. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    12. Guiyang Yu & Jun Qian & Peng Zhang & Bo Zhang & Wenxiang Zhang & Wenfu Yan & Gang Liu, 2019. "Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    13. Liang, Bo & Yao, Yue & Guo, Jin & Yang, Huazheng & Liang, Jiajiang & Zhao, Zhijiang & Wu, Gang & Zhan, Yuedong & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Ruirui, Zhao, 2022. "Propane-fuelled microtubular solid oxide fuel cell stack electrically connected by an anodic rectangular window," Applied Energy, Elsevier, vol. 309(C).
    14. Liu, Chang & Dang, Zheng & Xi, Guang, 2024. "Numerical study on thermal stress of solid oxide electrolyzer cell with various flow configurations," Applied Energy, Elsevier, vol. 353(PA).
    15. Alina LaPotin & Kevin L. Schulte & Myles A. Steiner & Kyle Buznitsky & Colin C. Kelsall & Daniel J. Friedman & Eric J. Tervo & Ryan M. France & Michelle R. Young & Andrew Rohskopf & Shomik Verma & Eve, 2022. "Thermophotovoltaic efficiency of 40%," Nature, Nature, vol. 604(7905), pages 287-291, April.
    16. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    18. Sanz-Bermejo, Javier & Muñoz-Antón, Javier & Gonzalez-Aguilar, José & Romero, Manuel, 2014. "Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production," Applied Energy, Elsevier, vol. 131(C), pages 238-247.
    19. Roy, Dibyendu & Samanta, Samiran, 2024. "A solar-assisted power-to-hydrogen system based on proton-conducting solid oxide electrolyzer cells," Renewable Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilong Dai & Yishuo Liu & Xue Chen & Tian Zhao, 2025. "Optimization of Heat Transfer Performances Within Porous Solar Receivers—A Comprehensive Review," Energies, MDPI, vol. 18(5), pages 1-31, February.
    2. Pan, Ruming & Yang, Youwei & Lougou, Bachirou Guene & Wu, Lianxuan & Wang, Wei & Guo, Yanming & Shuai, Yong, 2024. "Thermal performance evaluation of a novel solar-driven pyrolysis reactor," Energy, Elsevier, vol. 313(C).
    3. Zhang, Biao & Harun, Nor Farida & Zhou, Nana & Oryshchyn, Danylo & Colon-Rodriguez, Jose J. & Shadle, Lawrence & Bayham, Samuel & Tucker, David, 2025. "A real-time distributed solid oxide electrolysis cell (SOEC) model for cyber-physical simulation," Applied Energy, Elsevier, vol. 388(C).
    4. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    5. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    6. Lin, Zihan & Khan, Muhammad Sajid & Chen, Ji & Xia, Qi & Ma, Kewei & Ding, Weihua & Jiao, Long & Gao, Zengliang & Chen, Chen, 2024. "Solar methanol production from carbon dioxide and water using NaA zeolitic membrane reactor with pressurized solid oxide electrolysis cell," Energy, Elsevier, vol. 311(C).
    7. Shanshan Liang & Jingxiang Xu & Yunfeng Liao & Yu Zhao & Haibo Huo & Zhenhua Chu, 2025. "Multiphysics-Driven Structural Optimization of Flat-Tube Solid Oxide Electrolysis Cells to Enhance Hydrogen Production Efficiency and Thermal Stress Resistance," Energies, MDPI, vol. 18(10), pages 1-22, May.
    8. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    9. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    10. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    11. Zhou-Qiao Dai & Xu Ma & Xin-Yuan Tang & Ren-Zhong Zhang & Wei-Wei Yang, 2023. "Solar-Thermal-Chemical Integrated Design of a Cavity-Type Solar-Driven Methane Dry Reforming Reactor," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Fangzheng Liu & Liusheng Xiao & Ruidong Zhou & Qi Liu & Jinliang Yuan, 2025. "Evaluation of Thermal Stress and Performance for Solid Oxide Electrolysis Cells Employing Graded Fuel Electrodes," Energies, MDPI, vol. 18(11), pages 1-25, May.
    13. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    14. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    15. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    16. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    17. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    19. Wang, Dongxu & Zhang, Yiqun & Chen, Guangda & Fan, Guanheng & Li, Xintong & Du, Yingchun, 2023. "Analysis of space-based large light concentration reflective surfaces with errors," Renewable Energy, Elsevier, vol. 216(C).
    20. Hao, Mengyuan & Xiao, Gang & Qiu, Hao, 2025. "Experimental characteristics of thermionic energy converters employing barium-dispenser cathode and semiconductor anodes," Energy, Elsevier, vol. 325(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.