IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics030626192500337x.html
   My bibliography  Save this article

A real-time distributed solid oxide electrolysis cell (SOEC) model for cyber-physical simulation

Author

Listed:
  • Zhang, Biao
  • Harun, Nor Farida
  • Zhou, Nana
  • Oryshchyn, Danylo
  • Colon-Rodriguez, Jose J.
  • Shadle, Lawrence
  • Bayham, Samuel
  • Tucker, David

Abstract

System integration and dynamic operability between SOEC and balance-of-plant (BoP) components are major technical challenges before realizing rapid load following of SOEC systems. Cyber-physical simulation (CPS) is a leading-edge digital engineering approach and is regarded as the next step beyond Digital Twins. CPS approach can be used to research SOEC system integration and develop dynamic controls prior to actual pilot testing without using a real SOEC. To seamlessly couple with BoP hardware and access non-observable operational parameters (e.g., local temperature gradient) during transients, a distributed one-dimensional (1D) real-time SOEC model was developed. Its real-time execution was demonstrated for 20 to 640 nodes at the fixed time step of 5 ms. A higher excess air ratio enabled smaller local temperature gradients on SOEC solid materials and faster transients upon current density step change from 0.15 to 0.55 A cm−2. During the transients, the magnitude of the peak temperature gradient nearly doubled in 10 s from −3.5 to −5.9 °C cm−1. This represents a significant operating risk that can impact the dynamic operability of SOEC systems. In addition, the local temperature gradient was found to change directions on all nodes in SOEC solid materials, with the greatest impact on the upstream nodes. The SOEC model was also tested at the thermal neutral voltage using actual process air flow parameters as variable model inputs. Variable process air temperatures were found to induce alternating local temperature gradients on SOEC solid materials. These are new operational mechanisms for SOEC degradation relevant for load following operational modes yet distinct from previous reports. To mitigate these unfavorable features, the SOEC can be operated at voltages that are slightly (±20 mV) deviated from the thermal neutral voltage. The corresponding net thermal energy change was less than 1.6% of the electric power consumption. This 1D real-time SOEC model established the basis of cyber-physical simulation of SOEC hybrid systems.

Suggested Citation

  • Zhang, Biao & Harun, Nor Farida & Zhou, Nana & Oryshchyn, Danylo & Colon-Rodriguez, Jose J. & Shadle, Lawrence & Bayham, Samuel & Tucker, David, 2025. "A real-time distributed solid oxide electrolysis cell (SOEC) model for cyber-physical simulation," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s030626192500337x
    DOI: 10.1016/j.apenergy.2025.125607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500337X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hua & Høgh, Jens & Blennow, Peter & Sun, Xiufu & Zong, Yi & Chen, Ming, 2024. "Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks," Applied Energy, Elsevier, vol. 361(C).
    2. Yingqi Liu & Liusheng Xiao & Hao Wang & Dingrong Ou & Jinliang Yuan, 2024. "Numerical Study of H 2 Production and Thermal Stress for Solid Oxide Electrolysis Cells with Various Ribs/Channels," Energies, MDPI, vol. 17(2), pages 1-26, January.
    3. Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
    4. Kim, Jong Suk & Boardman, Richard D. & Bragg-Sitton, Shannon M., 2018. "Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems," Applied Energy, Elsevier, vol. 228(C), pages 2090-2110.
    5. Liu, Chang & Dang, Zheng & Xi, Guang, 2024. "Numerical study on thermal stress of solid oxide electrolyzer cell with various flow configurations," Applied Energy, Elsevier, vol. 353(PA).
    6. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    7. Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Banerjee, Aayan & Deutschmann, Olaf, 2022. "Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling," Applied Energy, Elsevier, vol. 317(C).
    8. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    9. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangzheng Liu & Liusheng Xiao & Ruidong Zhou & Qi Liu & Jinliang Yuan, 2025. "Evaluation of Thermal Stress and Performance for Solid Oxide Electrolysis Cells Employing Graded Fuel Electrodes," Energies, MDPI, vol. 18(11), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Liang & Jingxiang Xu & Yunfeng Liao & Yu Zhao & Haibo Huo & Zhenhua Chu, 2025. "Multiphysics-Driven Structural Optimization of Flat-Tube Solid Oxide Electrolysis Cells to Enhance Hydrogen Production Efficiency and Thermal Stress Resistance," Energies, MDPI, vol. 18(10), pages 1-22, May.
    2. Li, Jiabao & Luo, Jiancheng & Li, Hongxia & Wang, Pei, 2025. "Enhanced solar-to-hydrogen energy conversion utilizing microtubular solid oxide electrolysis cells as a volumetric solar absorber," Renewable Energy, Elsevier, vol. 240(C).
    3. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    4. Fangzheng Liu & Liusheng Xiao & Ruidong Zhou & Qi Liu & Jinliang Yuan, 2025. "Evaluation of Thermal Stress and Performance for Solid Oxide Electrolysis Cells Employing Graded Fuel Electrodes," Energies, MDPI, vol. 18(11), pages 1-25, May.
    5. Kim, Jun Yong & Mastropasqua, Luca & Saeedmanesh, Alireza & Brouwer, Jack, 2025. "Development of thermal control strategies for solid oxide electrolysis cell systems under dynamic operating conditions - Hot-standby and cold-start scenarios," Energy, Elsevier, vol. 317(C).
    6. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    7. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    8. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    9. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    10. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Zhang, Ru & Qiu, Leilei & Sun, Peiwei & Wei, Xinyu, 2024. "Research on nuclear reactor power control system of VVER-1000 with thermal energy supply system," Energy, Elsevier, vol. 294(C).
    12. Ramirez-Corredores, M.M. & Diaz, Luis A. & Gaffney, Anne M. & Zarzana, Christopher A., 2021. "Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Karthikeyan, B. & Praveen Kumar, G. & Basa, Soumen & Sinha, Shubhankar & Tyagi, Shikhar & Kamat, Param & Prabakaran, Rajendran & Kim, Sung Chul, 2025. "Strategic optimization of large-scale solar PV parks with PEM Electrolyzer-based hydrogen production, storage, and transportation to minimize hydrogen delivery costs to cities," Applied Energy, Elsevier, vol. 377(PD).
    14. Gainey, Brian & Lawler, Benjamin, 2021. "A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation," Applied Energy, Elsevier, vol. 283(C).
    15. Zhang, Hao & Wang, Xiaozhe & Guo, Haowei & Zang, Pengchao & Wang, Lei & Zhao, Haorao & Dong, Yong, 2025. "A novel route for coal-fired power plants flexibility through the integration of H2/O2 burning and solid oxide electrolysis cells: Design and performance evaluation," Energy, Elsevier, vol. 314(C).
    16. Ashar, Akhil & Wehrle, Lukas & Deutschmann, Olaf & Braun, Robert J., 2025. "High performance ammonia-fueled SOFC hybrid system for decarbonizing heavy-duty transportation applications," Applied Energy, Elsevier, vol. 390(C).
    17. Lee, Wooseok & Lang, Michael & Costa, Remi & Lee, In-Sung & Lee, Young-Sang & Hong, Jongsup, 2025. "Enhancing uniformity and performance in Solid Oxide Fuel Cells with double symmetry interconnect design," Applied Energy, Elsevier, vol. 381(C).
    18. Fang, Juan & Yang, Miaomiao & Sui, Junpeng & Luo, Tengqi & Yu, Yinsheng & Ao, Yunjin & Dou, Ruifeng & Zhou, Wenning & Li, Wei & Liu, Xunliang & Zhao, Kai, 2024. "Enhancing solar-powered hydrogen production efficiency by spectral beam splitting and integrated chemical energy storage," Applied Energy, Elsevier, vol. 372(C).
    19. Jin, Lingkang & Rossi, Mosè & Monforti Ferrario, Andrea & Mennilli, Francesca & Comodi, Gabriele, 2025. "Designing hybrid energy storage systems for steady green hydrogen production in residential areas: A GIS-based framework," Applied Energy, Elsevier, vol. 389(C).
    20. Liu, Hua & Høgh, Jens & Blennow, Peter & Sun, Xiufu & Zong, Yi & Chen, Ming, 2024. "Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s030626192500337x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.